|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
model |
|
): |
|
""" |
|
This function handles the chatbot response. It takes in: |
|
- message: the user's new message |
|
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) |
|
- system_message: the system prompt |
|
- max_tokens: the maximum number of tokens to generate in the response |
|
- temperature: sampling temperature |
|
- top_p: top-p (nucleus) sampling |
|
- frequency_penalty: penalize repeated tokens in the output |
|
- seed: a fixed seed for reproducibility; -1 will mean 'random' |
|
- model: the selected model for text generation |
|
""" |
|
|
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}, Model: {model}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=model, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600) |
|
print("Chatbot interface created.") |
|
|
|
|
|
featured_models = [ |
|
"meta-llama/Llama-3.3-70B-Instruct", |
|
"gpt-3.5-turbo", |
|
"gpt-4", |
|
"mistralai/Mistral-7B-Instruct-v0.1", |
|
"tiiuae/falcon-40b-instruct" |
|
] |
|
|
|
|
|
def filter_models(search_term): |
|
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()] |
|
return gr.update(choices=filtered_models) |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System message"), |
|
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), |
|
gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"), |
|
gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"), |
|
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio") |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
theme="Nymbo/Nymbo_Theme", |
|
) |
|
|
|
|
|
with demo: |
|
with gr.Tab("Model Settings"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
custom_model = gr.Textbox(label="Custom Model", info="Hugging Face model path (optional)", placeholder="username/model-name") |
|
|
|
with gr.Accordion("Featured Models", open=True): |
|
|
|
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input") |
|
|
|
model_radio = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio") |
|
|
|
model_search.change(filter_models, inputs=model_search, outputs=model_radio) |
|
|
|
|
|
with gr.Tab("Information"): |
|
with gr.Row(): |
|
|
|
with gr.Accordion("Featured Models (WiP)", open=False): |
|
gr.HTML( |
|
""" |
|
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p> |
|
<table style="width:100%; text-align:center; margin:auto;"> |
|
<tr> |
|
<th>Model Name</th> |
|
<th>Typical Use Case</th> |
|
<th>Notes</th> |
|
</tr> |
|
<tr> |
|
<td>meta-llama/Llama-3.3-70B-Instruct</td> |
|
<td>General-purpose instruction following</td> |
|
<td>High-quality, large-scale model</td> |
|
</tr> |
|
<tr> |
|
<td>gpt-3.5-turbo</td> |
|
<td>Chat and general text generation</td> |
|
<td>Fast and efficient</td> |
|
</tr> |
|
<tr> |
|
<td>gpt-4</td> |
|
<td>Advanced text generation</td> |
|
<td>State-of-the-art performance</td> |
|
</tr> |
|
<tr> |
|
<td>mistralai/Mistral-7B-Instruct-v0.1</td> |
|
<td>Instruction following</td> |
|
<td>Lightweight and efficient</td> |
|
</tr> |
|
<tr> |
|
<td>tiiuae/falcon-40b-instruct</td> |
|
<td>Instruction following</td> |
|
<td>High-quality, large-scale model</td> |
|
</tr> |
|
</table> |
|
""" |
|
) |
|
|
|
|
|
with gr.Accordion("Parameters Overview", open=False): |
|
gr.Markdown( |
|
""" |
|
## System Message |
|
###### This is the initial prompt that sets the behavior of the model. It can be used to define the tone, style, or role of the assistant. |
|
|
|
## Max Tokens |
|
###### This controls the maximum length of the generated response. Higher values allow for longer responses but may take more time to generate. |
|
|
|
## Temperature |
|
###### This controls the randomness of the output. Lower values make the model more deterministic, while higher values make it more creative. |
|
|
|
## Top-P |
|
###### This controls the diversity of the output by limiting the model to the most likely tokens. Lower values make the output more focused, while higher values allow for more diversity. |
|
|
|
## Frequency Penalty |
|
###### This penalizes repeated tokens in the output. Higher values discourage repetition, while lower values allow for more repetitive outputs. |
|
|
|
## Seed |
|
###### This sets a fixed seed for reproducibility. A value of -1 means the seed is random. |
|
|
|
## Model |
|
###### This selects the model used for text generation. You can choose from featured models or specify a custom model. |
|
""" |
|
) |
|
|
|
print("Gradio interface initialized.") |
|
|
|
if __name__ == "__main__": |
|
print("Launching the demo application.") |
|
demo.launch() |