|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model |
|
): |
|
""" |
|
This function handles the chatbot response. It takes in: |
|
- message: the user's new message |
|
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) |
|
- system_message: the system prompt |
|
- max_tokens: the maximum number of tokens to generate in the response |
|
- temperature: sampling temperature |
|
- top_p: top-p (nucleus) sampling |
|
- frequency_penalty: penalize repeated tokens in the output |
|
- seed: a fixed seed for reproducibility; -1 will mean 'random' |
|
- custom_model: the user-provided custom model name (if any) |
|
""" |
|
|
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
print(f"Custom model: {custom_model}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" |
|
print(f"Model selected for inference: {model_to_use}") |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=model_to_use, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
|
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600) |
|
print("Chatbot interface created.") |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System message"), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P" |
|
), |
|
gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty" |
|
), |
|
gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)" |
|
), |
|
gr.Textbox( |
|
value="", |
|
label="Custom Model", |
|
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty." |
|
), |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
theme="Nymbo/Nymbo_Theme", |
|
) |
|
print("Gradio interface initialized.") |
|
|
|
|
|
|
|
|
|
|
|
with demo: |
|
with gr.Accordion("Featured Models", open=False): |
|
|
|
model_search = gr.Textbox( |
|
label="Filter Models", |
|
placeholder="Search for a featured model...", |
|
lines=1 |
|
) |
|
|
|
|
|
models_list = [ |
|
"meta-llama/Llama-3.3-70B-Instruct", |
|
"meta-llama/Llama-3.1-8B-Instruct", |
|
"microsoft/Phi-3.5-mini-instruct", |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"tiiuae/falcon-7b-instruct", |
|
"Qwen/Qwen2.5-72B-Instruct", |
|
] |
|
|
|
|
|
|
|
featured_model = gr.Radio( |
|
label="Select a model below", |
|
choices=models_list, |
|
value="meta-llama/Llama-3.3-70B-Instruct", |
|
interactive=True |
|
) |
|
|
|
|
|
def filter_models(search_term): |
|
|
|
filtered = [m for m in models_list if search_term.lower() in m.lower()] |
|
return gr.update(choices=filtered) |
|
|
|
|
|
model_search.change(filter_models, inputs=model_search, outputs=featured_model) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Launching the demo application.") |
|
demo.launch() |