|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
def show_loading_status(msg): |
|
|
|
try: |
|
gr.toast(msg) |
|
except: |
|
pass |
|
print(msg) |
|
|
|
show_loading_status("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
show_loading_status("OpenAI client initialized.") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model |
|
): |
|
show_loading_status(f"Received message: {message}") |
|
show_loading_status(f"History: {history}") |
|
show_loading_status(f"System message: {system_message}") |
|
show_loading_status(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
show_loading_status(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
show_loading_status(f"Selected model (custom_model): {custom_model}") |
|
|
|
|
|
seed = seed if seed != -1 else random.randint(1, 1000000000), |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
show_loading_status("Initial messages array constructed.") |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
show_loading_status(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
show_loading_status(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
show_loading_status("Latest user message appended.") |
|
|
|
|
|
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" |
|
show_loading_status(f"Model selected for inference: {model_to_use}") |
|
|
|
response_text = "" |
|
show_loading_status("Sending request to OpenAI API.") |
|
|
|
try: |
|
for message_chunk in client.chat.completions.create( |
|
model=model_to_use, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
show_loading_status(f"Received token: {token_text}") |
|
response_text += token_text |
|
yield response_text |
|
|
|
show_loading_status("Completed response generation.") |
|
|
|
except Exception as e: |
|
show_loading_status("Error encountered during completion streaming.") |
|
raise gr.Error(f"An unexpected error occurred: {str(e)}") |
|
|
|
|
|
|
|
|
|
chatbot = gr.Chatbot( |
|
height=600, |
|
show_copy_button=True, |
|
placeholder="Select a model and begin chatting", |
|
likeable=True, |
|
layout="panel" |
|
) |
|
show_loading_status("Chatbot interface created.") |
|
|
|
system_message_box = gr.Textbox( |
|
value="", |
|
placeholder="You are a helpful assistant.", |
|
label="System Prompt" |
|
) |
|
|
|
max_tokens_slider = gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
) |
|
temperature_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
top_p_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P" |
|
) |
|
frequency_penalty_slider = gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty" |
|
) |
|
seed_slider = gr.Slider( |
|
minimum=-1, |
|
maximum=1000000000, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)" |
|
) |
|
|
|
custom_model_box = gr.Textbox( |
|
value="", |
|
label="Custom Model", |
|
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", |
|
placeholder="meta-llama/Llama-3.3-70B-Instruct" |
|
) |
|
|
|
def set_custom_model_from_radio(selected): |
|
show_loading_status(f"Featured model selected: {selected}") |
|
return selected |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
system_message_box, |
|
max_tokens_slider, |
|
temperature_slider, |
|
top_p_slider, |
|
frequency_penalty_slider, |
|
seed_slider, |
|
custom_model_box, |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
theme="Nymbo/Nymbo_Theme", |
|
) |
|
show_loading_status("ChatInterface object created.") |
|
|
|
with demo: |
|
with gr.Accordion("Model Selection", open=False): |
|
model_search_box = gr.Textbox( |
|
label="Filter Models", |
|
placeholder="Search for a featured model...", |
|
lines=1 |
|
) |
|
show_loading_status("Model search box created.") |
|
|
|
models_list = [ |
|
"meta-llama/Llama-3.3-70B-Instruct", |
|
"meta-llama/Llama-3.2-3B-Instruct", |
|
"meta-llama/Llama-3.2-1B-Instruct", |
|
"meta-llama/Llama-3.1-8B-Instruct", |
|
"NousResearch/Hermes-3-Llama-3.1-8B", |
|
"mistralai/Mistral-Nemo-Instruct-2407", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"Qwen/Qwen2.5-72B-Instruct", |
|
"Qwen/QwQ-32B-Preview", |
|
"HuggingFaceTB/SmolLM2-1.7B-Instruct", |
|
"microsoft/Phi-3.5-mini-instruct", |
|
] |
|
show_loading_status("Models list initialized.") |
|
|
|
featured_model_radio = gr.Radio( |
|
label="Select a model below", |
|
choices=models_list, |
|
value="meta-llama/Llama-3.3-70B-Instruct", |
|
interactive=True |
|
) |
|
show_loading_status("Featured models radio button created.") |
|
|
|
def filter_models(search_term): |
|
show_loading_status(f"Filtering models with search term: {search_term}") |
|
filtered = [m for m in models_list if search_term.lower() in m.lower()] |
|
show_loading_status(f"Filtered models: {filtered}") |
|
return gr.update(choices=filtered) |
|
|
|
model_search_box.change( |
|
fn=filter_models, |
|
inputs=model_search_box, |
|
outputs=featured_model_radio |
|
) |
|
show_loading_status("Model search box change event linked.") |
|
|
|
featured_model_radio.change( |
|
fn=set_custom_model_from_radio, |
|
inputs=featured_model_radio, |
|
outputs=custom_model_box |
|
) |
|
show_loading_status("Featured model radio button change event linked.") |
|
|
|
show_loading_status("Gradio interface initialized.") |
|
|
|
if __name__ == "__main__": |
|
show_loading_status("Launching the demo application.") |
|
demo.launch() |