|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model, |
|
selected_featured_model |
|
): |
|
""" |
|
This function handles the chatbot response. It takes in: |
|
- message: the user's new message |
|
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) |
|
- system_message: the system prompt |
|
- max_tokens: the maximum number of tokens to generate in the response |
|
- temperature: sampling temperature |
|
- top_p: top-p (nucleus) sampling |
|
- frequency_penalty: penalize repeated tokens in the output |
|
- seed: a fixed seed for reproducibility; -1 will mean 'random' |
|
- custom_model: the user-provided custom model name (if any) |
|
- selected_featured_model: the model selected from featured models |
|
""" |
|
|
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
print(f"Custom model: {custom_model}") |
|
print(f"Selected featured model: {selected_featured_model}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
if custom_model.strip() != "": |
|
model_to_use = custom_model.strip() |
|
print(f"Using Custom Model: {model_to_use}") |
|
else: |
|
model_to_use = selected_featured_model |
|
print(f"Using Featured Model: {model_to_use}") |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
try: |
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=model_to_use, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
|
|
yield response |
|
except Exception as e: |
|
print(f"Error during API call: {e}") |
|
yield f"An error occurred: {e}" |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600) |
|
print("Chatbot interface created.") |
|
|
|
|
|
FEATURED_MODELS_LIST = [ |
|
"meta-llama/Llama-3.1-8B-Instruct", |
|
"microsoft/Phi-3.5-mini-instruct", |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"Qwen/Qwen2.5-72B-Instruct", |
|
] |
|
|
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: |
|
gr.Markdown("# Serverless-TextGen-Hub 📝🤖") |
|
gr.Markdown( |
|
""" |
|
Welcome to the **Serverless-TextGen-Hub**! Chat with your favorite models seamlessly. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
|
|
chatbot_component = gr.Chatbot(height=600) |
|
|
|
with gr.Row(): |
|
|
|
system_message = gr.Textbox( |
|
value="You are a helpful assistant.", |
|
label="System Message", |
|
placeholder="Enter system message here...", |
|
lines=2, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
user_message = gr.Textbox( |
|
label="Your Message", |
|
placeholder="Type your message here...", |
|
lines=2, |
|
) |
|
|
|
run_button = gr.Button("Send", variant="primary") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
max_tokens = gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max New Tokens", |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P", |
|
) |
|
frequency_penalty = gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty", |
|
) |
|
seed = gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)", |
|
) |
|
custom_model = gr.Textbox( |
|
value="", |
|
label="Custom Model", |
|
info="(Optional) Provide a custom Hugging Face model path. This will override the selected featured model if not empty.", |
|
placeholder="e.g., meta-llama/Llama-3.3-70B-Instruct", |
|
) |
|
|
|
with gr.Accordion("Featured Models", open=True): |
|
with gr.Column(): |
|
model_search = gr.Textbox( |
|
label="Filter Models", |
|
placeholder="Search for a featured model...", |
|
lines=1, |
|
) |
|
featured_model = gr.Radio( |
|
label="Select a model below", |
|
value=FEATURED_MODELS_LIST[0], |
|
choices=FEATURED_MODELS_LIST, |
|
interactive=True, |
|
) |
|
|
|
|
|
def filter_featured_models(search_term): |
|
if not search_term: |
|
return gr.update(choices=FEATURED_MODELS_LIST, value=FEATURED_MODELS_LIST[0]) |
|
filtered = [model for model in FEATURED_MODELS_LIST if search_term.lower() in model.lower()] |
|
if not filtered: |
|
return gr.update(choices=[], value=None) |
|
return gr.update(choices=filtered, value=filtered[0]) |
|
|
|
|
|
model_search.change( |
|
fn=filter_featured_models, |
|
inputs=model_search, |
|
outputs=featured_model, |
|
) |
|
|
|
|
|
def handle_response(message, history, system_msg, max_tok, temp, tp, freq_pen, sd, custom_mod, selected_feat_mod): |
|
|
|
history = history or [] |
|
history.append((message, None)) |
|
|
|
response = respond( |
|
message=message, |
|
history=history, |
|
system_message=system_msg, |
|
max_tokens=max_tok, |
|
temperature=temp, |
|
top_p=tp, |
|
frequency_penalty=freq_pen, |
|
seed=sd, |
|
custom_model=custom_mod, |
|
selected_featured_model=selected_feat_mod, |
|
) |
|
return response, history + [(message, response)] |
|
|
|
|
|
run_button.click( |
|
fn=handle_response, |
|
inputs=[ |
|
user_message, |
|
chatbot_component, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model, |
|
featured_model, |
|
], |
|
outputs=[ |
|
chatbot_component, |
|
chatbot_component, |
|
], |
|
) |
|
|
|
|
|
user_message.submit( |
|
fn=handle_response, |
|
inputs=[ |
|
user_message, |
|
chatbot_component, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model, |
|
featured_model, |
|
], |
|
outputs=[ |
|
chatbot_component, |
|
chatbot_component, |
|
], |
|
) |
|
|
|
|
|
demo.load(lambda: None, None, None, _js=""" |
|
() => { |
|
const style = document.createElement('style'); |
|
style.innerHTML = ` |
|
footer {visibility: hidden !important;} |
|
.gradio-container {background-color: #f9f9f9;} |
|
`; |
|
document.head.appendChild(style); |
|
} |
|
""") |
|
|
|
print("Launching Gradio interface...") |
|
|
|
|
|
demo.launch(show_api=False, share=False) |