|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
model |
|
): |
|
""" |
|
This function handles the chatbot response. It takes in: |
|
- message: the user's new message |
|
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) |
|
- system_message: the system prompt |
|
- max_tokens: the maximum number of tokens to generate in the response |
|
- temperature: sampling temperature |
|
- top_p: top-p (nucleus) sampling |
|
- frequency_penalty: penalize repeated tokens in the output |
|
- seed: a fixed seed for reproducibility; -1 will mean 'random' |
|
- model: the model to use for text generation |
|
""" |
|
|
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
print(f"Model: {model}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=model, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600) |
|
print("Chatbot interface created.") |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System message"), |
|
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), |
|
gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty" |
|
), |
|
gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)" |
|
), |
|
gr.Textbox(label="Custom Model", placeholder="Enter a custom model path"), |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
theme="Nymbo/Nymbo_Theme", |
|
) |
|
print("Gradio interface initialized.") |
|
|
|
|
|
with gr.Blocks(theme='Nymbo/Nymbo_Theme_5') as textgen: |
|
|
|
with gr.Tab("Basic Settings"): |
|
with gr.Row(): |
|
with gr.Column(elem_id="prompt-container"): |
|
with gr.Row(): |
|
|
|
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input") |
|
with gr.Row(): |
|
|
|
custom_model = gr.Textbox(label="Custom Model", info="Model Hugging Face path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct") |
|
with gr.Row(): |
|
|
|
with gr.Accordion("Featured Models", open=True): |
|
|
|
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input") |
|
models_list = ( |
|
"meta-llama/Llama-3.3-70B-Instruct", |
|
"meta-llama/Llama-3.3-13B-Instruct", |
|
"meta-llama/Llama-3.3-30B-Instruct", |
|
"meta-llama/Llama-3.3-7B-Instruct", |
|
) |
|
|
|
|
|
model = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio") |
|
|
|
|
|
def filter_models(search_term): |
|
filtered_models = [m for m in models_list if search_term.lower() in m.lower()] |
|
return gr.update(choices=filtered_models) |
|
|
|
|
|
model_search.change(filter_models, inputs=model_search, outputs=model) |
|
|
|
|
|
with gr.Tab("Advanced Settings"): |
|
with gr.Row(): |
|
|
|
max_tokens = gr.Slider(label="Max new tokens", value=512, minimum=1, maximum=4096, step=1) |
|
with gr.Row(): |
|
|
|
temperature = gr.Slider(label="Temperature", value=0.7, minimum=0.1, maximum=4.0, step=0.1) |
|
with gr.Row(): |
|
|
|
top_p = gr.Slider(label="Top-P", value=0.95, minimum=0.1, maximum=1.0, step=0.05) |
|
with gr.Row(): |
|
|
|
frequency_penalty = gr.Slider(label="Frequency Penalty", value=0.0, minimum=-2.0, maximum=2.0, step=0.1) |
|
with gr.Row(): |
|
|
|
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=65535, step=1) |
|
|
|
|
|
with gr.Tab("Information"): |
|
with gr.Row(): |
|
|
|
gr.Textbox(label="Sample prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.") |
|
|
|
|
|
with gr.Accordion("Featured Models (WiP)", open=False): |
|
gr.HTML( |
|
""" |
|
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p> |
|
<table style="width:100%; text-align:center; margin:auto;"> |
|
<tr> |
|
<th>Model Name</th> |
|
<th>Typography</th> |
|
<th>Notes</th> |
|
</tr> |
|
<tr> |
|
<td>meta-llama/Llama-3.3-70B-Instruct</td> |
|
<td>✅</td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>meta-llama/Llama-3.3-13B-Instruct</td> |
|
<td>✅</td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>meta-llama/Llama-3.3-30B-Instruct</td> |
|
<td>✅</td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>meta-llama/Llama-3.3-7B-Instruct</td> |
|
<td>✅</td> |
|
<td></td> |
|
</tr> |
|
</table> |
|
""" |
|
) |
|
|
|
|
|
with gr.Accordion("Parameters Overview", open=False): |
|
gr.Markdown( |
|
""" |
|
## Max New Tokens |
|
###### This slider allows you to specify the maximum number of tokens to generate in the response. The default value is 512, and the maximum output is 4096. |
|
|
|
## Temperature |
|
###### The temperature controls the randomness of the output. A higher temperature makes the output more random, while a lower temperature makes it more deterministic. The default value is 0.7. |
|
|
|
## Top-P |
|
###### Top-P (nucleus) sampling is a way to control the diversity of the output. A higher value allows for more diverse outputs, while a lower value makes the output more focused. The default value is 0.95. |
|
|
|
## Frequency Penalty |
|
###### The frequency penalty penalizes repeated tokens in the output. A higher value makes the output more diverse, while a lower value allows for more repetition. The default value is 0.0. |
|
|
|
## Seed |
|
###### The seed is a fixed value for reproducibility. If you find a seed that gives you a result you love, you can use it again to create a similar output. If you leave it at -1, the AI will generate a new seed every time. |
|
|
|
### Remember, these settings are all about giving you control over the text generation process. Feel free to experiment and see what each one does. And if you're ever in doubt, the default settings are a great place to start. Happy creating! |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") |
|
|
|
with gr.Row(): |
|
text_output = gr.Textbox(label="Text Output", elem_id="text-output") |
|
|
|
|
|
text_button.click(respond, inputs=[text_prompt, chatbot, gr.Textbox(value="", label="System message"), max_tokens, temperature, top_p, frequency_penalty, seed, model], outputs=text_output) |
|
|
|
print("Launching Gradio interface...") |
|
|
|
textgen.launch(show_api=False, share=False) |