|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
selected_model, |
|
): |
|
""" |
|
This function handles the chatbot response. It takes in: |
|
- message: the user's new message |
|
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) |
|
- system_message: the system prompt |
|
- max_tokens: the maximum number of tokens to generate in the response |
|
- temperature: sampling temperature |
|
- top_p: top-p (nucleus) sampling |
|
- frequency_penalty: penalize repeated tokens in the output |
|
- seed: a fixed seed for reproducibility; -1 will mean 'random' |
|
- selected_model: the model to use for generating the response |
|
""" |
|
|
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
print(f"Selected model: {selected_model}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=selected_model, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600) |
|
print("Chatbot interface created.") |
|
|
|
|
|
featured_models = [ |
|
"meta-llama/Llama-3.3-70B-Instruct", |
|
"google/flan-t5-xl", |
|
"facebook/bart-large-cnn", |
|
"EleutherAI/gpt-neo-2.7B", |
|
|
|
] |
|
|
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: |
|
|
|
with gr.Tab("Models"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("Featured Models", open=True): |
|
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1) |
|
model = gr.Dropdown(label="Select a model below", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True) |
|
|
|
def filter_models(search_term): |
|
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()] |
|
return gr.update(choices=filtered_models) |
|
|
|
model_search.change(filter_models, inputs=model_search, outputs=model) |
|
|
|
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model ID here", interactive=True) |
|
|
|
|
|
with gr.Tab("Chat"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
system_message = gr.Textbox(label="System Message", value="", lines=3) |
|
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max New Tokens") |
|
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") |
|
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") |
|
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600) |
|
|
|
|
|
submit_btn = gr.Button("Submit") |
|
|
|
|
|
with gr.Tab("Information"): |
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
# Featured Models |
|
|
|
- **meta-llama/Llama-3.3-70B-Instruct**: A large language model from Meta. |
|
- **google/flan-t5-xl**: A pretrained encoder-decoder model from Google. |
|
- **facebook/bart-large-cnn**: A pretrained sequence-to-sequence model from Facebook. |
|
- **EleutherAI/gpt-neo-2.7B**: A large autoregressive language model from EleutherAI. |
|
|
|
# Parameters Overview |
|
|
|
- **System Message**: Sets the behavior and context for the assistant. |
|
- **Max New Tokens**: Limits the length of the generated response. |
|
- **Temperature**: Controls the randomness of the output. Higher values make output more random. |
|
- **Top-P**: Controls the diversity of text by selecting tokens that account for top-p probability mass. |
|
- **Frequency Penalty**: Decreases the model's likelihood to repeat the same lines. |
|
- **Seed**: Ensures reproducibility of results; set to -1 for random seed. |
|
""" |
|
) |
|
|
|
|
|
def user(user_message, history): |
|
return "", history + [[user_message, None]] |
|
|
|
|
|
def bot(history, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, selected_model): |
|
|
|
user_message = history[-1][0] |
|
|
|
response_iter = respond( |
|
user_message, |
|
history[:-1], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
selected_model, |
|
) |
|
|
|
full_response = "" |
|
for resp in response_iter: |
|
full_response = resp |
|
|
|
history[-1][1] = full_response |
|
return history |
|
|
|
|
|
txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then( |
|
bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot |
|
) |
|
submit_btn.click(user, [txt, chatbot], [txt, chatbot], queue=False).then( |
|
bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot |
|
) |
|
|
|
print("Gradio interface initialized.") |
|
|
|
if __name__ == "__main__": |
|
print("Launching the demo application.") |
|
demo.launch() |