File size: 4,067 Bytes
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import json

from datetime import datetime

from datasets import load_dataset

from src.constants import LOCAL_CONFIG_PATH, LOCAL_DATASET_PATH


##############################################
# Get the dataset app
##############################################


def load_dataset_from_hub(dataset_name):
    # delete the existing dataset
    if os.path.exists(LOCAL_DATASET_PATH):
        os.system(f"rm -rf {LOCAL_DATASET_PATH}")
    ds = load_dataset(dataset_name)
    ds.save_to_disk(LOCAL_DATASET_PATH)
    split = load_split()
    columns = list(ds[split].features.keys())
    df = ds[split].to_pandas()
    with open(LOCAL_CONFIG_PATH, "w") as f:
        json.dump({"columns": columns, "split": split, "name": dataset_name}, f)
    return df


##############################################
# Define the dataset app
##############################################


def load_repo_id():
    with open(LOCAL_CONFIG_PATH, "r") as f:
        config = json.load(f)
    return config["name"]


def load_dataset_dict_json(split):
    dataset_dict_fn = "dataset_info.json"
    path = os.path.join(LOCAL_DATASET_PATH, split, dataset_dict_fn)
    with open(path, "r") as f:
        return json.load(f)


def load_dataset_name():
    dataset_dict = load_dataset_dict_json("train")
    return dataset_dict["dataset_name"]


def load_argilla_dataset_name():
    name = load_dataset_name()
    now = datetime.now()
    name = f"{name}_{now.strftime('%Y%m%d%H%M%S')}"
    return name


def load_split_choices():
    dataset_dict = load_dataset_dict_json("train")
    return list(dataset_dict["splits"].keys())


def load_split():
    return load_split_choices()[0]


def load_columns():
    dataset_dict = load_dataset_dict_json("train")
    return list(dataset_dict["features"].keys())


def get_split_features(split):
    dataset_dict = load_dataset_dict_json(split)
    return dataset_dict["features"]


def get_feature_type(split, column_name):
    features = get_split_features(split)
    return features[column_name]["_type"]


def get_feature_dtype(split, column_name):
    features = get_split_features(split)
    try:
        return features[column_name]["dtype"]
    except TypeError:
        return None


def is_field(split, column_name):
    try:
        return (
            get_feature_dtype(split, column_name) == "string"
            and get_feature_type(split, column_name) == "Value"
        )
    except KeyError:
        return False


def is_label(split, column_name):
    feature_type = get_feature_type(split, column_name)
    return feature_type == "ClassLabel"


def is_float(split, column_name):
    try:
        feature_type = get_feature_type(split, column_name)
        feature_dtype = get_feature_dtype(split, column_name)
        return feature_type == "Value" and feature_dtype.startswith("float")
    except KeyError:
        return False


def is_int(split, column_name):
    try:
        feature_type = get_feature_type(split, column_name)
        feature_dtype = get_feature_dtype(split, column_name)
        return feature_type == "Value" and feature_dtype.startswith("int")
    except KeyError:
        return False


def get_feature_labels(split, column_name):
    features = get_split_features(split)
    return features[column_name]["names"]


def get_feature_values(split, column_name):
    ds = load_dataset(load_repo_id())
    return list(set(ds[split][column_name]))


def is_rating(split, column_name):
    feature_values = get_feature_values(split, column_name)
    if not is_int(split, column_name):
        return False
    if len(feature_values) > 10:
        return False
    return True


def get_field_columns():
    split = load_split()
    columns = load_columns()
    return [column for column in columns if is_field(split, column)]


def get_question_columns():
    split = load_split()
    columns = load_columns()
    return [column for column in columns if not is_field(split, column)]


def load_dataset_df():
    split = load_split()
    ds = load_dataset(load_repo_id())
    return ds[split].to_pandas()