Spaces:
Sleeping
Sleeping
Ben Burtenshaw
commited on
Commit
·
7c4fb72
1
Parent(s):
1fdaf11
feat: remove column casting type inference
Browse files- app.py +102 -61
- src/argilla_utils.py +14 -31
app.py
CHANGED
@@ -5,7 +5,6 @@ from src import dataset
|
|
5 |
from src import spaces
|
6 |
|
7 |
|
8 |
-
|
9 |
def refresh_dataset_settings_view(
|
10 |
columns,
|
11 |
question_columns,
|
@@ -133,73 +132,115 @@ with gr.Blocks() as app:
|
|
133 |
)
|
134 |
|
135 |
# Field columns
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
# Question columns
|
151 |
-
question_columns_view = gr.Dropdown(
|
152 |
-
label="Question Columns",
|
153 |
-
info="Columns to be used as question suggestions in the Argilla dataset",
|
154 |
-
choices=dataset.load_columns(),
|
155 |
-
multiselect=True,
|
156 |
-
value=dataset.get_field_columns(),
|
157 |
-
allow_custom_value=True,
|
158 |
-
)
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
question_type = gr.Dropdown(
|
170 |
-
label="Question Type",
|
171 |
-
info="The type of question to be added to the Argilla dataset",
|
172 |
-
choices=["Text", "Label", "Rating"],
|
173 |
-
)
|
174 |
-
with gr.Column():
|
175 |
-
question_name = gr.Textbox(
|
176 |
-
label="Question Name",
|
177 |
-
info="The name of the question to be added to the Argilla dataset",
|
178 |
-
)
|
179 |
-
with gr.Column():
|
180 |
-
gr.Button(value="Add Question").click(
|
181 |
-
fn=lambda type, name, questions: questions
|
182 |
-
+ [(type, name)],
|
183 |
-
inputs=[
|
184 |
-
question_type,
|
185 |
-
question_name,
|
186 |
-
question_columns_view,
|
187 |
-
],
|
188 |
-
outputs=[question_columns_view],
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Accordion(label="Define Metadata and Vectors", open=False):
|
192 |
-
metadata_columns_view = gr.Dropdown(
|
193 |
-
label="Metadata Columns",
|
194 |
-
info="Columns to be used as metadata in the Argilla dataset",
|
195 |
choices=dataset.load_columns(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
multiselect=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
)
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
choices=dataset.load_columns(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
multiselect=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
)
|
204 |
|
205 |
n_records = gr.Slider(1, 10000, 100, label="Number of Records")
|
@@ -258,7 +299,7 @@ with gr.Blocks() as app:
|
|
258 |
field_columns_view,
|
259 |
question_columns_view,
|
260 |
metadata_columns_view,
|
261 |
-
vector_columns_view,
|
262 |
],
|
263 |
outputs=[records_view, mapping],
|
264 |
)
|
|
|
5 |
from src import spaces
|
6 |
|
7 |
|
|
|
8 |
def refresh_dataset_settings_view(
|
9 |
columns,
|
10 |
question_columns,
|
|
|
132 |
)
|
133 |
|
134 |
# Field columns
|
135 |
+
with gr.Accordion(label="Fields", open=True):
|
136 |
+
field_columns_view = gr.Dropdown(
|
137 |
+
label="Column",
|
138 |
+
info="Columns to be used as fields in the Argilla dataset",
|
139 |
+
choices=dataset.load_columns(),
|
140 |
+
multiselect=True,
|
141 |
+
value=dataset.get_field_columns(),
|
142 |
+
allow_custom_value=True,
|
143 |
+
)
|
144 |
+
field_columns_view.change(
|
145 |
+
fn=lambda value: gr.update(value=[]),
|
146 |
+
inputs=[field_columns_view],
|
147 |
+
outputs=[field_columns_view],
|
148 |
+
)
|
149 |
|
150 |
# Question columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
with gr.Accordion(label="Questions", open=True):
|
153 |
+
question_type = gr.Dropdown(
|
154 |
+
label="Type",
|
155 |
+
info="The type of question to be added to the Argilla dataset",
|
156 |
+
choices=["Text", "Label", "Rating"],
|
157 |
+
)
|
158 |
+
question_column = gr.Dropdown(
|
159 |
+
label="Column",
|
160 |
+
info="Column in the hub dataset to be used as question suggestions in the Argilla dataset",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
choices=dataset.load_columns(),
|
162 |
+
allow_custom_value=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
question_name = gr.Textbox(
|
166 |
+
label="Name",
|
167 |
+
info="The name of the question to be added to the Argilla dataset",
|
168 |
+
)
|
169 |
+
question_column.select(
|
170 |
+
fn=lambda value: value,
|
171 |
+
inputs=[question_column],
|
172 |
+
outputs=[question_name],
|
173 |
+
)
|
174 |
+
add_question_btn = gr.Button(value="Add Question")
|
175 |
+
question_columns_view = gr.Dropdown(
|
176 |
+
label="Question Columns",
|
177 |
+
info="Columns to be used as question suggestions in the Argilla dataset",
|
178 |
multiselect=True,
|
179 |
+
allow_custom_value=True,
|
180 |
+
value=[],
|
181 |
+
)
|
182 |
+
|
183 |
+
# question_columns_view.change(
|
184 |
+
# fn=lambda value: gr.update(value=[]),
|
185 |
+
# inputs=[question_columns_view],
|
186 |
+
# outputs=[question_columns_view],
|
187 |
+
# )
|
188 |
+
|
189 |
+
add_question_btn.click(
|
190 |
+
fn=lambda type, name, column, questions: questions
|
191 |
+
+ [(type, name, column)],
|
192 |
+
inputs=[
|
193 |
+
question_type,
|
194 |
+
question_name,
|
195 |
+
question_column,
|
196 |
+
question_columns_view,
|
197 |
+
],
|
198 |
+
outputs=[question_columns_view],
|
199 |
)
|
200 |
+
|
201 |
+
# Metadata columns
|
202 |
+
|
203 |
+
with gr.Accordion(label="Metadata", open=True):
|
204 |
+
metadata_type = gr.Dropdown(
|
205 |
+
label="Type",
|
206 |
+
info="The type of metadata to be added to the Argilla dataset",
|
207 |
+
choices=["Integer", "Float", "Term"],
|
208 |
+
)
|
209 |
+
metadata_column = gr.Dropdown(
|
210 |
+
label="Column",
|
211 |
+
info="Column in the hub dataset to be used as metadata suggestions in the Argilla dataset",
|
212 |
choices=dataset.load_columns(),
|
213 |
+
allow_custom_value=True,
|
214 |
+
)
|
215 |
+
|
216 |
+
metadata_name = gr.Textbox(
|
217 |
+
label="Name",
|
218 |
+
info="The name of the metadata to be added to the Argilla dataset",
|
219 |
+
)
|
220 |
+
metadata_column.select(
|
221 |
+
fn=lambda value: value,
|
222 |
+
inputs=[metadata_column],
|
223 |
+
outputs=[question_name],
|
224 |
+
)
|
225 |
+
add_metadata_btn = gr.Button(value="Add Metadata")
|
226 |
+
metadata_columns_view = gr.Dropdown(
|
227 |
+
label="Metadata Columns",
|
228 |
+
info="Columns to be used as metadata suggestions in the Argilla dataset",
|
229 |
multiselect=True,
|
230 |
+
allow_custom_value=True,
|
231 |
+
value=[],
|
232 |
+
)
|
233 |
+
|
234 |
+
add_metadata_btn.click(
|
235 |
+
fn=lambda type, name, column, metadata: metadata
|
236 |
+
+ [(type, name, column)],
|
237 |
+
inputs=[
|
238 |
+
metadata_type,
|
239 |
+
metadata_name,
|
240 |
+
metadata_column,
|
241 |
+
metadata_columns_view,
|
242 |
+
],
|
243 |
+
outputs=[metadata_columns_view],
|
244 |
)
|
245 |
|
246 |
n_records = gr.Slider(1, 10000, 100, label="Number of Records")
|
|
|
299 |
field_columns_view,
|
300 |
question_columns_view,
|
301 |
metadata_columns_view,
|
302 |
+
# vector_columns_view,
|
303 |
],
|
304 |
outputs=[records_view, mapping],
|
305 |
)
|
src/argilla_utils.py
CHANGED
@@ -11,13 +11,14 @@ from src.dataset import (
|
|
11 |
is_float,
|
12 |
get_feature_values,
|
13 |
get_feature_labels,
|
|
|
14 |
)
|
15 |
|
16 |
client = rg.Argilla(api_url="http://localhost:6900", api_key="owner.apikey")
|
17 |
|
18 |
|
19 |
def define_dataset_setting(
|
20 |
-
dataset_name, field_columns, question_columns, metadata_columns
|
21 |
):
|
22 |
split = load_split()
|
23 |
|
@@ -31,17 +32,7 @@ def define_dataset_setting(
|
|
31 |
mapping[column_name] = field_column_name
|
32 |
|
33 |
# Add question columns
|
34 |
-
for column_name in question_columns:
|
35 |
-
if isinstance(column_name, (list, tuple)):
|
36 |
-
question_type, column_name = column_name
|
37 |
-
elif is_label(split, column_name):
|
38 |
-
question_type = "Label"
|
39 |
-
elif is_rating(split, column_name):
|
40 |
-
question_type = "Rating"
|
41 |
-
else:
|
42 |
-
question_type = "Text"
|
43 |
-
|
44 |
-
question_column_name = f"{column_name}_question"
|
45 |
if question_type == "Label":
|
46 |
values = get_feature_values(split, column_name)
|
47 |
titles = get_feature_labels(split, column_name)
|
@@ -63,29 +54,21 @@ def define_dataset_setting(
|
|
63 |
if not metadata_columns:
|
64 |
metadata_columns = []
|
65 |
|
66 |
-
for column_name in metadata_columns:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
elif is_label:
|
73 |
values = list(map(str, get_feature_values(split, column_name)))
|
74 |
metadata.append(
|
75 |
-
rg.TermsMetadataProperty(name=
|
76 |
)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
if not vector_columns:
|
81 |
-
vector_columns = []
|
82 |
-
|
83 |
-
for column_name in vector_columns:
|
84 |
-
vectors.append(rg.VectorField(name=column_name))
|
85 |
|
86 |
-
settings = rg.Settings(
|
87 |
-
fields=fields, questions=questions, metadata=metadata, vectors=vectors
|
88 |
-
)
|
89 |
|
90 |
dataset = rg.Dataset(name=dataset_name, settings=settings, client=client)
|
91 |
|
|
|
11 |
is_float,
|
12 |
get_feature_values,
|
13 |
get_feature_labels,
|
14 |
+
load_repo_id,
|
15 |
)
|
16 |
|
17 |
client = rg.Argilla(api_url="http://localhost:6900", api_key="owner.apikey")
|
18 |
|
19 |
|
20 |
def define_dataset_setting(
|
21 |
+
dataset_name, field_columns, question_columns, metadata_columns
|
22 |
):
|
23 |
split = load_split()
|
24 |
|
|
|
32 |
mapping[column_name] = field_column_name
|
33 |
|
34 |
# Add question columns
|
35 |
+
for question_type, question_column_name, column_name in question_columns:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
if question_type == "Label":
|
37 |
values = get_feature_values(split, column_name)
|
38 |
titles = get_feature_labels(split, column_name)
|
|
|
54 |
if not metadata_columns:
|
55 |
metadata_columns = []
|
56 |
|
57 |
+
for metadata_type, metadata_name, column_name in metadata_columns:
|
58 |
+
if metadata_type == "Integer":
|
59 |
+
metadata.append(rg.IntegerMetadataProperty(name=metadata_name))
|
60 |
+
elif metadata_type == "Float":
|
61 |
+
metadata.append(rg.FloatMetadataProperty(name=metadata_name))
|
62 |
+
elif metadata_type == "Term":
|
|
|
63 |
values = list(map(str, get_feature_values(split, column_name)))
|
64 |
metadata.append(
|
65 |
+
rg.TermsMetadataProperty(name=metadata_name, options=values)
|
66 |
)
|
67 |
+
if column_name in mapping:
|
68 |
+
column_name = f"{column_name}__"
|
69 |
+
mapping[column_name] = metadata_name
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
settings = rg.Settings(fields=fields, questions=questions, metadata=metadata)
|
|
|
|
|
72 |
|
73 |
dataset = rg.Dataset(name=dataset_name, settings=settings, client=client)
|
74 |
|