burtenshaw
commited on
Commit
·
551ae1a
1
Parent(s):
fb723d2
switch back to gradio
Browse files- = +0 -0
- README.md +81 -453
- mcp_server.py → app.py +198 -182
- pyproject.toml +4 -3
- requirements.txt +2 -1
- uv.lock +0 -0
=
ADDED
File without changes
|
README.md
CHANGED
@@ -1,508 +1,136 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
- **🚀 UV-Powered**: Uses UV/UVX for fast, modern Python dependency management
|
9 |
-
- **🤖 MCP Server**: Native MCP server with tools, resources, and prompts
|
10 |
-
- **🎯 Multi-Provider Support**: Access 14+ inference providers including Cerebras, Cohere, Fal AI, Fireworks, Groq, and more
|
11 |
-
- **💬 Chat Completion**: Interactive conversations with LLMs and Vision Language Models
|
12 |
-
- **📊 Resources**: Access provider information and popular model recommendations
|
13 |
-
- **🔍 Context Logging**: Rich logging and error handling through MCP context
|
14 |
-
- **🔧 Easy Integration**: Simple configuration for Cursor, Claude Desktop, and other MCP clients
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
| Provider | Chat Completion | Vision Language Models |
|
19 |
-
|----------|----------------|------------------------|
|
20 |
-
| Cerebras | ✅ | ❌ |
|
21 |
-
| Cohere | ✅ | ✅ |
|
22 |
-
| Fal AI | ✅ | ✅ |
|
23 |
-
| Featherless AI | ✅ | ✅ |
|
24 |
-
| Fireworks | ✅ | ✅ |
|
25 |
-
| Groq | ✅ | ❌ |
|
26 |
-
| HF Inference | ✅ | ✅ |
|
27 |
-
| Hyperbolic | ✅ | ✅ |
|
28 |
-
| Nebius | ✅ | ✅ |
|
29 |
-
| Novita | ✅ | ✅ |
|
30 |
-
| Nscale | ✅ | ✅ |
|
31 |
-
| Replicate | ✅ | ✅ |
|
32 |
-
| SambaNova | ✅ | ✅ |
|
33 |
-
| Together | ✅ | ✅ |
|
34 |
-
|
35 |
-
## 🛠️ Quick Start
|
36 |
-
|
37 |
-
### 1. Get a Hugging Face Token
|
38 |
-
|
39 |
-
1. Go to [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
|
40 |
-
2. Create a new token with **Inference Providers** scope
|
41 |
-
3. Copy the token (starts with `hf_`)
|
42 |
-
|
43 |
-
### 2. Install Dependencies
|
44 |
-
|
45 |
-
```bash
|
46 |
-
# Clone the repository
|
47 |
-
git clone <repository-url>
|
48 |
-
cd inference-providers-mcp
|
49 |
-
|
50 |
-
# Install dependencies
|
51 |
-
pip install -r requirements.txt
|
52 |
-
```
|
53 |
-
|
54 |
-
### 3. Set Environment Variables
|
55 |
-
|
56 |
-
Create a `.env` file in your project directory:
|
57 |
-
|
58 |
-
```bash
|
59 |
-
# .env file
|
60 |
-
HF_TOKEN=hf_your_actual_token_here
|
61 |
-
```
|
62 |
-
|
63 |
-
Or set it globally:
|
64 |
-
|
65 |
-
```bash
|
66 |
-
# Linux/macOS
|
67 |
-
export HF_TOKEN=hf_your_actual_token_here
|
68 |
-
|
69 |
-
# Windows
|
70 |
-
set HF_TOKEN=hf_your_actual_token_here
|
71 |
-
```
|
72 |
-
|
73 |
-
### 4. Test the Server
|
74 |
-
|
75 |
-
```bash
|
76 |
-
# Test the server works (using UV - recommended)
|
77 |
-
uvx test_mcp.py
|
78 |
-
|
79 |
-
# Or test with Python
|
80 |
-
python test_mcp.py
|
81 |
-
|
82 |
-
# Run the server manually (optional)
|
83 |
-
uvx mcp_server.py
|
84 |
-
# Or: python mcp_server.py
|
85 |
-
```
|
86 |
-
|
87 |
-
## 🎯 Cursor IDE Integration
|
88 |
-
|
89 |
-
There are several ways to integrate this FastMCP server with Cursor IDE. Choose the method that works best for your setup.
|
90 |
-
|
91 |
-
> **✅ Your Current Configuration is Already Optimal!**
|
92 |
-
>
|
93 |
-
> Looking at your `.cursor/mcp.json`, you're already using `uvx` which is the recommended approach. Your configuration with `uvx` + `mcp_server.py` is perfect for modern FastMCP development!
|
94 |
-
|
95 |
-
### Method 1: Cursor Settings UI (Recommended)
|
96 |
-
|
97 |
-
This is the easiest method for beginners:
|
98 |
|
99 |
-
|
100 |
-
- Go to `Settings → Cursor Settings → Features → Model Context Protocol`
|
101 |
-
- OR use `Cmd/Ctrl + ,` and search for "MCP"
|
102 |
|
103 |
-
|
104 |
-
- Click **"Add New MCP Server"**
|
105 |
-
- Fill in the configuration:
|
106 |
-
|
107 |
-
```
|
108 |
-
Name: inference-providers
|
109 |
-
Command: uvx
|
110 |
-
Arguments: mcp_server.py
|
111 |
-
Environment Variables:
|
112 |
-
HF_TOKEN: hf_your_actual_token_here
|
113 |
-
```
|
114 |
-
|
115 |
-
**Why UV/UVX?** ✨
|
116 |
-
- **Faster**: UV is significantly faster than pip for dependency management
|
117 |
-
- **Auto-manages dependencies**: Automatically handles virtual environments and packages
|
118 |
-
- **Modern**: The recommended approach for Python tooling in 2025
|
119 |
-
- **No setup required**: Works without manual virtual environment creation
|
120 |
-
|
121 |
-
3. **Save and Test**:
|
122 |
-
- Click **"Add"** to save
|
123 |
-
- Restart Cursor
|
124 |
-
- Open a new chat and try: *"Use the chat completion tool to ask Groq about Python"*
|
125 |
-
|
126 |
-
### Method 2: Project-Specific Configuration (Recommended)
|
127 |
-
|
128 |
-
Create a `.cursor/mcp.json` file in your project root:
|
129 |
-
|
130 |
-
```json
|
131 |
-
{
|
132 |
-
"mcpServers": {
|
133 |
-
"inference-providers": {
|
134 |
-
"command": "uvx",
|
135 |
-
"args": ["mcp_server.py"],
|
136 |
-
"env": {
|
137 |
-
"HF_TOKEN": "hf_your_actual_token_here"
|
138 |
-
}
|
139 |
-
}
|
140 |
-
}
|
141 |
-
}
|
142 |
-
```
|
143 |
-
|
144 |
-
**Advantages**:
|
145 |
-
- ✅ Project-specific (only available in this project)
|
146 |
-
- ✅ Can be version controlled (but **don't commit tokens!**)
|
147 |
-
- ✅ Automatic activation when opening the project
|
148 |
-
- ✅ UV automatically handles dependencies from `pyproject.toml`
|
149 |
-
|
150 |
-
### Method 3: Global Configuration
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
**Windows**: `%USERPROFILE%\.cursor\mcp.json`
|
156 |
|
|
|
|
|
157 |
```json
|
158 |
{
|
159 |
"mcpServers": {
|
160 |
"inference-providers": {
|
161 |
-
"
|
162 |
-
"args": ["/full/path/to/your/project/mcp_server.py"],
|
163 |
-
"env": {
|
164 |
-
"HF_TOKEN": "hf_your_actual_token_here"
|
165 |
-
}
|
166 |
}
|
167 |
}
|
168 |
}
|
169 |
```
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
- ✅ Set once, use everywhere
|
174 |
-
|
175 |
-
### Method 4: Environment Variables (Most Secure)
|
176 |
-
|
177 |
-
If you have `HF_TOKEN` set as a system environment variable, you can use:
|
178 |
-
|
179 |
```json
|
180 |
{
|
181 |
"mcpServers": {
|
182 |
"inference-providers": {
|
183 |
-
"command": "
|
184 |
-
"args": ["
|
185 |
}
|
186 |
}
|
187 |
}
|
188 |
```
|
189 |
|
190 |
-
The server will automatically pick up `HF_TOKEN` from your environment.
|
191 |
-
|
192 |
-
## 🔄 UV vs Python: When to Use Which?
|
193 |
-
|
194 |
-
| Approach | Best For | Pros | Cons |
|
195 |
-
|----------|----------|------|------|
|
196 |
-
| **`uvx` (Recommended)** | Most users, development | ⚡ Fast, auto-manages deps, modern | Requires UV installation |
|
197 |
-
| **`python`** | System restrictions, debugging | 🔧 Universal, explicit control | Manual venv management |
|
198 |
-
| **`uv run`** | Local development | 🎯 Project-aware, consistent | Must be in project directory |
|
199 |
-
|
200 |
-
### UV Installation
|
201 |
-
|
202 |
-
If you don't have UV installed:
|
203 |
-
|
204 |
-
```bash
|
205 |
-
# macOS/Linux
|
206 |
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
207 |
-
|
208 |
-
# Windows
|
209 |
-
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
210 |
-
|
211 |
-
# Alternative: pip install
|
212 |
-
pip install uv
|
213 |
-
```
|
214 |
-
|
215 |
-
## 🎮 Using the Server in Cursor
|
216 |
-
|
217 |
-
Once configured, you can use the server in several ways:
|
218 |
-
|
219 |
-
### 1. Let Cursor Auto-Select Tools
|
220 |
-
|
221 |
-
Simply describe what you want:
|
222 |
-
|
223 |
-
```
|
224 |
-
"Help me compare language models for code generation"
|
225 |
-
"Get recommendations for the best chat models"
|
226 |
-
"I need to chat with a model about Python best practices"
|
227 |
-
```
|
228 |
-
|
229 |
-
Cursor will automatically detect and use the appropriate tools.
|
230 |
-
|
231 |
-
### 2. Explicitly Request Tools
|
232 |
-
|
233 |
-
Be more specific about which tool to use:
|
234 |
-
|
235 |
-
```
|
236 |
-
"Use the chat_completion tool with DeepSeek V3 via Novita to explain machine learning"
|
237 |
-
"Call the inference providers chat tool to ask Groq about async programming"
|
238 |
-
```
|
239 |
-
|
240 |
-
### 3. Access Resources
|
241 |
|
242 |
-
|
243 |
|
244 |
-
|
245 |
-
"Show me the available inference providers"
|
246 |
-
"What are the popular models I can use?"
|
247 |
-
"Get the provider capabilities information"
|
248 |
-
```
|
249 |
-
|
250 |
-
### 4. Generate Prompts
|
251 |
-
|
252 |
-
Use the prompt generation feature:
|
253 |
-
|
254 |
-
```
|
255 |
-
"Generate a prompt to compare chat providers"
|
256 |
-
"Create a comparison prompt for vision language models"
|
257 |
-
```
|
258 |
-
|
259 |
-
## 🎪 Example Conversations
|
260 |
|
261 |
-
|
262 |
|
263 |
-
|
264 |
-
You: "Use the chat completion tool with Groq and Llama 3.1 70B to explain async/await in Python"
|
265 |
|
266 |
-
|
267 |
-
- Provider: groq
|
268 |
-
- Model: meta-llama/Llama-3.1-70B-Instruct
|
269 |
-
- Message: "Explain async/await in Python with examples"
|
270 |
|
271 |
-
|
272 |
-
```
|
273 |
|
274 |
-
|
275 |
|
276 |
-
|
277 |
-
You: "Help me choose between Groq and Together AI for coding tasks"
|
278 |
|
279 |
-
|
280 |
-
Response: [Detailed comparison of providers with recommendations...]
|
281 |
-
```
|
282 |
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
You: "What are good models for vision tasks?"
|
287 |
|
288 |
-
|
289 |
-
Response: Here are the recommended vision models:
|
290 |
-
- meta-llama/Llama-3.2-11B-Vision-Instruct (Together)
|
291 |
-
- microsoft/Phi-3.5-vision-instruct (HF Inference)
|
292 |
-
- command-r-plus-vision (Cohere)
|
293 |
-
```
|
294 |
|
295 |
-
|
|
|
|
|
|
|
296 |
|
297 |
-
|
|
|
|
|
298 |
|
299 |
-
|
300 |
|
301 |
```bash
|
302 |
-
#
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
python -c "
|
307 |
-
from mcp_server import mcp
|
308 |
-
mcp.run(transport='sse', host='0.0.0.0', port=8000)
|
309 |
-
"
|
310 |
-
```
|
311 |
-
|
312 |
-
Then configure Cursor to connect remotely:
|
313 |
-
|
314 |
-
```json
|
315 |
-
{
|
316 |
-
"mcpServers": {
|
317 |
-
"inference-providers": {
|
318 |
-
"command": "npx",
|
319 |
-
"args": [
|
320 |
-
"-y",
|
321 |
-
"@modelcontextprotocol/client-remote",
|
322 |
-
"http://your-server:8000/sse"
|
323 |
-
],
|
324 |
-
"env": {
|
325 |
-
"HF_TOKEN": "hf_your_token_here"
|
326 |
-
}
|
327 |
-
}
|
328 |
-
}
|
329 |
-
}
|
330 |
-
```
|
331 |
-
|
332 |
-
### Alternative UV Commands
|
333 |
-
|
334 |
-
Different ways to run with UV:
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
"inference-providers-uvx": {
|
340 |
-
"command": "uvx",
|
341 |
-
"args": ["mcp_server.py"],
|
342 |
-
"env": {"HF_TOKEN": "hf_your_token_here"}
|
343 |
-
},
|
344 |
-
"inference-providers-uv-run": {
|
345 |
-
"command": "uv",
|
346 |
-
"args": ["run", "mcp_server.py"],
|
347 |
-
"env": {"HF_TOKEN": "hf_your_token_here"}
|
348 |
-
},
|
349 |
-
"inference-providers-uv-tool": {
|
350 |
-
"command": "uv",
|
351 |
-
"args": ["tool", "run", "mcp_server.py"],
|
352 |
-
"env": {"HF_TOKEN": "hf_your_token_here"}
|
353 |
-
}
|
354 |
-
}
|
355 |
-
}
|
356 |
```
|
357 |
|
358 |
-
|
359 |
-
- **`uvx`**: Installs and runs in isolated environment (recommended)
|
360 |
-
- **`uv run`**: Runs using project's pyproject.toml (project-aware)
|
361 |
-
- **`uv tool run`**: Explicit tool execution (most explicit)
|
362 |
-
|
363 |
-
## 🚨 Troubleshooting
|
364 |
-
|
365 |
-
### Server Not Appearing in Cursor
|
366 |
-
|
367 |
-
1. **Check Configuration Syntax**:
|
368 |
-
```bash
|
369 |
-
# Validate JSON syntax
|
370 |
-
python -c "import json; print(json.load(open('.cursor/mcp.json')))"
|
371 |
-
```
|
372 |
-
|
373 |
-
2. **Verify Command Works**:
|
374 |
-
```bash
|
375 |
-
# Test with UV (recommended)
|
376 |
-
uvx mcp_server.py
|
377 |
-
|
378 |
-
# Or test with Python
|
379 |
-
python mcp_server.py
|
380 |
-
```
|
381 |
-
|
382 |
-
3. **Check UV Installation**:
|
383 |
-
```bash
|
384 |
-
# Verify UV is installed
|
385 |
-
uv --version
|
386 |
-
uvx --version
|
387 |
-
```
|
388 |
-
|
389 |
-
4. **Check Token Format**:
|
390 |
-
- Token should start with `hf_`
|
391 |
-
- No quotes in environment variables
|
392 |
-
- Token has "Inference Providers" scope
|
393 |
-
|
394 |
-
### Tool Not Working
|
395 |
-
|
396 |
-
1. **Check Cursor Logs**:
|
397 |
-
- Go to `Help → Show Logs`
|
398 |
-
- Look for MCP-related errors
|
399 |
-
|
400 |
-
2. **Test Server Manually**:
|
401 |
-
```bash
|
402 |
-
# Test with UV
|
403 |
-
uvx test_mcp.py
|
404 |
-
|
405 |
-
# Or with Python
|
406 |
-
python test_mcp.py
|
407 |
-
```
|
408 |
-
|
409 |
-
3. **Verify Dependencies**:
|
410 |
-
```bash
|
411 |
-
# UV automatically handles dependencies, but you can check:
|
412 |
-
uv pip list
|
413 |
-
```
|
414 |
-
|
415 |
-
4. **Verify Token Permissions**:
|
416 |
-
- Go to [HF Settings](https://huggingface.co/settings/tokens)
|
417 |
-
- Ensure token has "Inference Providers" access
|
418 |
-
|
419 |
-
### Common Error Messages
|
420 |
-
|
421 |
-
| Error | Solution |
|
422 |
-
|-------|----------|
|
423 |
-
| `HF_TOKEN is required` | Set HF_TOKEN environment variable |
|
424 |
-
| `Unknown provider: xyz` | Check provider name spelling |
|
425 |
-
| `Import "fastmcp" could not be resolved` | Run `uv add fastmcp` or `pip install fastmcp` |
|
426 |
-
| `Server failed to start` | Check UV/Python path and permissions |
|
427 |
-
| `uvx: command not found` | Install UV: `curl -LsSf https://astral.sh/uv/install.sh \| sh` |
|
428 |
-
| `Permission denied` | Check file permissions: `chmod +x mcp_server.py` |
|
429 |
-
|
430 |
-
### Getting Help
|
431 |
-
|
432 |
-
If you're still having issues:
|
433 |
-
|
434 |
-
1. **Check our test script**: `python test_mcp.py`
|
435 |
-
2. **Review Cursor MCP docs**: [https://docs.cursor.com/context/model-context-protocol](https://docs.cursor.com/context/model-context-protocol)
|
436 |
-
3. **Check FastMCP docs**: [https://github.com/jlowin/fastmcp](https://github.com/jlowin/fastmcp)
|
437 |
-
4. **Cursor Community**: [https://forum.cursor.com](https://forum.cursor.com)
|
438 |
-
|
439 |
-
## 🤖 Available MCP Capabilities
|
440 |
-
|
441 |
-
### 🛠️ Tools
|
442 |
-
|
443 |
-
**`chat_completion`** - Generate chat completions using Hugging Face Inference Providers
|
444 |
-
|
445 |
-
Parameters:
|
446 |
-
- `provider`: Inference provider (cerebras, cohere, groq, novita, etc.)
|
447 |
-
- `model`: Model ID from Hugging Face Hub
|
448 |
-
- `messages`: Chat messages (JSON array or plain text)
|
449 |
-
- `temperature`: Response randomness (0.0-2.0, default 0.7)
|
450 |
-
- `max_tokens`: Maximum response length (1-4096, default 512)
|
451 |
-
- `top_p`: Nucleus sampling (0.0-1.0, default 0.9)
|
452 |
-
- `stream`: Stream response (boolean, default False)
|
453 |
-
- `stop_sequences`: Stop sequences (comma-separated)
|
454 |
-
- `frequency_penalty`: Frequency penalty (-2.0 to 2.0)
|
455 |
-
- `presence_penalty`: Presence penalty (-2.0 to 2.0)
|
456 |
-
- `hf_token`: Your Hugging Face token (optional, uses env var)
|
457 |
-
|
458 |
-
### 📊 Resources
|
459 |
-
|
460 |
-
**`providers`** - Get list of available inference providers and capabilities
|
461 |
-
**`models/popular`** - Get curated recommendations for popular models
|
462 |
-
|
463 |
-
### 💭 Prompts
|
464 |
-
|
465 |
-
**`generate_provider_comparison_prompt`** - Generate prompts for comparing providers
|
466 |
-
|
467 |
-
## 🚀 FastMCP Features Used
|
468 |
-
|
469 |
-
- **@mcp.tool**: Exposes the chat completion function as an MCP tool
|
470 |
-
- **@mcp.resource**: Provides access to provider and model information
|
471 |
-
- **@mcp.prompt**: Generates helpful prompts for provider comparison
|
472 |
-
- **Context**: Rich logging, error handling, and progress reporting
|
473 |
-
- **Multiple Transports**: Supports stdio, SSE, and HTTP transports
|
474 |
-
|
475 |
-
## 🎯 Popular Models to Try
|
476 |
-
|
477 |
-
**Chat Models:**
|
478 |
-
- `deepseek-ai/DeepSeek-V3-0324` (Novita)
|
479 |
-
- `meta-llama/Llama-3.1-70B-Instruct` (Groq)
|
480 |
-
- `mistralai/Mixtral-8x7B-Instruct-v0.1` (Together)
|
481 |
-
- `google/gemma-2-27b-it` (HF Inference)
|
482 |
-
|
483 |
-
**Vision Language Models:**
|
484 |
-
- `meta-llama/Llama-3.2-11B-Vision-Instruct` (Together)
|
485 |
-
- `microsoft/Phi-3.5-vision-instruct` (HF Inference)
|
486 |
-
|
487 |
-
## 📖 Technical Details
|
488 |
|
489 |
-
|
490 |
-
- **
|
491 |
-
- **
|
492 |
-
- **
|
493 |
-
- **Async/Await** - For efficient request handling
|
494 |
-
- **Rich Context Logging** - For detailed operation tracking
|
495 |
|
496 |
-
## 🔗
|
497 |
|
498 |
-
- [FastMCP GitHub](https://github.com/jlowin/fastmcp)
|
499 |
-
- [FastMCP Documentation](https://gofastmcp.com)
|
500 |
- [Cursor MCP Docs](https://docs.cursor.com/context/model-context-protocol)
|
501 |
-
- [
|
502 |
-
- [Inference Providers
|
503 |
- [Get HF Token](https://huggingface.co/settings/tokens)
|
504 |
-
- [Cursor Community Forum](https://forum.cursor.com)
|
505 |
|
506 |
## 📝 License
|
507 |
|
508 |
-
|
|
|
1 |
+
---
|
2 |
+
title: Inference Providers MCP Server
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.34.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
|
12 |
+
# 🤖 Inference Providers MCP Server
|
13 |
|
14 |
+
A streamlined **Model Context Protocol (MCP) Server** that provides LLMs with access to Hugging Face Inference Providers through a single, focused tool.
|
15 |
|
16 |
+
## ✨ What is this?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
This MCP server exposes a `chat_completion` tool that allows LLMs and AI assistants to chat with language models across 14+ inference providers including Cerebras, Cohere, Fireworks, Groq, and more.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
**Why use this?** Instead of manually switching between different AI providers, your LLM can automatically access the best model for each task through a unified interface.
|
|
|
|
|
21 |
|
22 |
+
## 🚀 Supported Providers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
| Provider | Chat | Vision | Provider | Chat | Vision |
|
25 |
+
|----------|------|--------|----------|------|--------|
|
26 |
+
| Cerebras | ✅ | ❌ | Nebius | ✅ | ✅ |
|
27 |
+
| Cohere | ✅ | ✅ | Novita | ✅ | ✅ |
|
28 |
+
| Fal AI | ✅ | ✅ | Nscale | ✅ | ✅ |
|
29 |
+
| Featherless AI | ✅ | ✅ | Replicate | ✅ | ✅ |
|
30 |
+
| Fireworks | ✅ | ✅ | SambaNova | ✅ | ✅ |
|
31 |
+
| Groq | ✅ | ❌ | Together | ✅ | ✅ |
|
32 |
+
| HF Inference | ✅ | ✅ | Hyperbolic | ✅ | ✅ |
|
33 |
+
|
34 |
+
## 🛠️ Quick Setup
|
35 |
+
|
36 |
+
### 1. Get HF Token
|
37 |
+
1. Visit [HF Settings](https://huggingface.co/settings/tokens)
|
38 |
+
2. Create token with **Inference Providers** scope
|
39 |
+
3. Copy the token (starts with `hf_`)
|
40 |
|
41 |
+
### 2. Configure Your MCP Client
|
|
|
42 |
|
43 |
+
#### Cursor IDE
|
44 |
+
Add to `.cursor/mcp.json`:
|
45 |
```json
|
46 |
{
|
47 |
"mcpServers": {
|
48 |
"inference-providers": {
|
49 |
+
"url": "YOUR_URL/gradio_api/mcp/sse"
|
|
|
|
|
|
|
|
|
50 |
}
|
51 |
}
|
52 |
}
|
53 |
```
|
54 |
|
55 |
+
#### Claude Desktop
|
56 |
+
Add to MCP settings:
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
```json
|
58 |
{
|
59 |
"mcpServers": {
|
60 |
"inference-providers": {
|
61 |
+
"command": "npx",
|
62 |
+
"args": ["mcp-remote", "YOUR_URL/gradio_api/mcp/sse", "--transport", "sse-only"]
|
63 |
}
|
64 |
}
|
65 |
}
|
66 |
```
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
### 3. Server URLs
|
70 |
|
71 |
+
**HF Spaces:** `https://username-spacename.hf.space/gradio_api/mcp/sse`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
**Local:** `http://localhost:7860/gradio_api/mcp/sse`
|
74 |
|
75 |
+
## 🎯 How to Use
|
|
|
76 |
|
77 |
+
Once configured, your LLM can use the tool:
|
|
|
|
|
|
|
78 |
|
79 |
+
> "Use chat completion with Groq and Llama to explain Python best practices"
|
|
|
80 |
|
81 |
+
> "Chat with DeepSeek V3 via Novita about machine learning concepts"
|
82 |
|
83 |
+
## 🛠️ Available Tool
|
|
|
84 |
|
85 |
+
**`chat_completion`** - Generate responses using multiple AI providers
|
|
|
|
|
86 |
|
87 |
+
**Parameters:**
|
88 |
+
- `provider`: Provider name (novita, groq, cerebras, etc.)
|
89 |
+
- `model`: Model ID (e.g., `deepseek-ai/DeepSeek-V3-0324`)
|
90 |
+
- `messages`: Input text or JSON messages array
|
91 |
+
- `temperature`: Response randomness (0.0-2.0, default: 0.7)
|
92 |
+
- `max_tokens`: Max response length (1-4096, default: 512)
|
93 |
|
94 |
+
**Environment:** Requires `HF_TOKEN` environment variable
|
|
|
95 |
|
96 |
+
## 🎯 Popular Models
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
**Text Models:**
|
99 |
+
- `deepseek-ai/DeepSeek-V3-0324` (Novita)
|
100 |
+
- `meta-llama/Llama-3.1-70B-Instruct` (Groq)
|
101 |
+
- `mistralai/Mixtral-8x7B-Instruct-v0.1` (Together)
|
102 |
|
103 |
+
**Vision Models:**
|
104 |
+
- `meta-llama/Llama-3.2-11B-Vision-Instruct` (Together)
|
105 |
+
- `microsoft/Phi-3.5-vision-instruct` (HF Inference)
|
106 |
|
107 |
+
## 💻 Local Development
|
108 |
|
109 |
```bash
|
110 |
+
# Clone and setup
|
111 |
+
git clone <repository-url>
|
112 |
+
cd inference-providers-mcp
|
113 |
+
pip install -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Set token and run
|
116 |
+
export HF_TOKEN=hf_your_token_here
|
117 |
+
python app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
```
|
119 |
|
120 |
+
## 🔧 Technical Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
- **Built with:** Gradio + MCP support (`gradio[mcp]`)
|
123 |
+
- **Protocol:** Model Context Protocol (MCP) via Server-Sent Events
|
124 |
+
- **Security:** Environment-based token management
|
125 |
+
- **Compatibility:** Works with Cursor, Claude Desktop, and other MCP clients
|
|
|
|
|
126 |
|
127 |
+
## 🔗 Resources
|
128 |
|
|
|
|
|
129 |
- [Cursor MCP Docs](https://docs.cursor.com/context/model-context-protocol)
|
130 |
+
- [Gradio MCP Guide](https://huggingface.co/blog/gradio-mcp)
|
131 |
+
- [Inference Providers Docs](https://huggingface.co/docs/inference-providers)
|
132 |
- [Get HF Token](https://huggingface.co/settings/tokens)
|
|
|
133 |
|
134 |
## 📝 License
|
135 |
|
136 |
+
MIT License - see the code for details.
|
mcp_server.py → app.py
RENAMED
@@ -1,11 +1,8 @@
|
|
|
|
1 |
import os
|
2 |
-
import json
|
3 |
import requests
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
# Initialize FastMCP server
|
8 |
-
mcp = FastMCP("Inference Providers MCP Server")
|
9 |
|
10 |
# Inference Providers configuration
|
11 |
PROVIDERS = {
|
@@ -82,228 +79,247 @@ PROVIDERS = {
|
|
82 |
}
|
83 |
|
84 |
|
85 |
-
|
86 |
-
provider: str,
|
87 |
-
endpoint: str,
|
88 |
-
payload: Dict[str, Any],
|
89 |
-
hf_token: str,
|
90 |
-
ctx: Optional[Context] = None,
|
91 |
-
) -> Dict[str, Any]:
|
92 |
-
"""Make a request to the inference provider"""
|
93 |
-
if not hf_token:
|
94 |
-
error_msg = (
|
95 |
-
"HF_TOKEN is required. Please set it in the environment or provide it."
|
96 |
-
)
|
97 |
-
if ctx:
|
98 |
-
await ctx.error(error_msg)
|
99 |
-
return {"error": error_msg}
|
100 |
-
|
101 |
-
provider_config = PROVIDERS.get(provider)
|
102 |
-
if not provider_config:
|
103 |
-
error_msg = f"Unknown provider: {provider}"
|
104 |
-
if ctx:
|
105 |
-
await ctx.error(error_msg)
|
106 |
-
return {"error": error_msg}
|
107 |
-
|
108 |
-
url = f"{provider_config['base_url']}/{endpoint}"
|
109 |
-
headers = {
|
110 |
-
"Authorization": f"Bearer {hf_token}",
|
111 |
-
"Content-Type": "application/json",
|
112 |
-
}
|
113 |
-
|
114 |
-
if ctx:
|
115 |
-
await ctx.info(f"Making request to {provider} ({url})")
|
116 |
-
|
117 |
-
try:
|
118 |
-
response = requests.post(url, headers=headers, json=payload, timeout=60)
|
119 |
-
response.raise_for_status()
|
120 |
-
|
121 |
-
if ctx:
|
122 |
-
await ctx.info(f"Request successful to {provider}")
|
123 |
-
|
124 |
-
return response.json()
|
125 |
-
except requests.exceptions.RequestException as e:
|
126 |
-
error_msg = f"Request failed: {str(e)}"
|
127 |
-
if ctx:
|
128 |
-
await ctx.error(error_msg)
|
129 |
-
return {"error": error_msg}
|
130 |
-
|
131 |
-
|
132 |
-
@mcp.tool()
|
133 |
-
async def chat_completion(
|
134 |
provider: str,
|
135 |
model: str,
|
136 |
messages: str,
|
137 |
-
ctx: Context,
|
138 |
temperature: float = 0.7,
|
139 |
max_tokens: int = 512,
|
140 |
-
|
141 |
-
stream: bool = False,
|
142 |
-
stop_sequences: str = "",
|
143 |
-
frequency_penalty: float = 0.0,
|
144 |
-
presence_penalty: float = 0.0,
|
145 |
-
hf_token: Optional[str] = None,
|
146 |
-
) -> str:
|
147 |
"""Generate chat completions using Hugging Face Inference Providers.
|
148 |
|
149 |
-
This tool
|
150 |
-
|
151 |
-
Groq, and others.
|
152 |
|
153 |
Args:
|
154 |
-
provider: The inference provider to use
|
155 |
-
|
156 |
-
hyperbolic, nebius, novita, nscale,
|
157 |
-
together
|
158 |
model: The model ID from Hugging Face Hub
|
159 |
(e.g., 'deepseek-ai/DeepSeek-V3-0324')
|
160 |
messages: Either a JSON array of messages in OpenAI format or
|
161 |
plain text for simple queries
|
162 |
temperature: Controls response randomness (0.0-2.0, default 0.7)
|
163 |
max_tokens: Maximum tokens in response (1-4096, default 512)
|
164 |
-
top_p: Nucleus sampling parameter (0.0-1.0, default 0.9)
|
165 |
-
stream: Whether to stream the response (default False)
|
166 |
-
stop_sequences: Comma-separated stop sequences (optional)
|
167 |
-
frequency_penalty: Penalize frequent tokens (-2.0 to 2.0)
|
168 |
-
presence_penalty: Penalize present tokens (-2.0 to 2.0)
|
169 |
-
hf_token: Your Hugging Face token with Inference Providers access
|
170 |
-
(falls back to HF_TOKEN environment variable)
|
171 |
|
172 |
Returns:
|
173 |
The generated text response from the language model
|
174 |
"""
|
175 |
-
# Get HF token from
|
176 |
-
|
177 |
-
if not
|
178 |
-
|
179 |
-
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
|
|
|
|
|
183 |
|
184 |
try:
|
185 |
# Parse messages
|
186 |
if messages.strip().startswith("["):
|
187 |
parsed_messages = json.loads(messages)
|
188 |
-
await ctx.info(f"Parsed {len(parsed_messages)} messages from JSON")
|
189 |
else:
|
190 |
parsed_messages = [{"role": "user", "content": messages}]
|
191 |
-
await ctx.info("Created single user message")
|
192 |
|
|
|
193 |
payload = {
|
194 |
"model": model,
|
195 |
"messages": parsed_messages,
|
196 |
"temperature": temperature,
|
197 |
"max_tokens": max_tokens,
|
198 |
-
"top_p": top_p,
|
199 |
-
"stream": stream,
|
200 |
}
|
201 |
|
202 |
-
#
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
if presence_penalty != 0:
|
211 |
-
payload["presence_penalty"] = presence_penalty
|
212 |
-
|
213 |
-
result = await make_request(
|
214 |
-
provider, "v1/chat/completions", payload, token, ctx
|
215 |
-
)
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
|
|
|
221 |
if "choices" in result and len(result["choices"]) > 0:
|
222 |
-
|
223 |
-
await ctx.info(f"Generated response with {len(response_text)} characters")
|
224 |
-
return response_text
|
225 |
else:
|
226 |
-
|
227 |
-
return json.dumps(result, indent=2)
|
228 |
|
229 |
-
except json.JSONDecodeError
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
233 |
except Exception as e:
|
234 |
-
|
235 |
-
await ctx.error(error_msg)
|
236 |
-
return f"Error: {error_msg}"
|
237 |
-
|
238 |
-
|
239 |
-
@mcp.resource("file://providers")
|
240 |
-
async def get_providers() -> str:
|
241 |
-
"""Get the list of available inference providers and their capabilities.
|
242 |
-
|
243 |
-
Returns JSON information about all supported providers including their
|
244 |
-
supported tasks and base URLs.
|
245 |
-
"""
|
246 |
-
return json.dumps(PROVIDERS, indent=2)
|
247 |
-
|
248 |
|
249 |
-
@mcp.resource("file://models/popular")
|
250 |
-
async def get_popular_models() -> str:
|
251 |
-
"""Get a list of popular models for each provider.
|
252 |
|
253 |
-
|
254 |
-
"""
|
255 |
-
|
256 |
-
"
|
257 |
-
"cerebras": ["llama3.1-70b"],
|
258 |
-
"cohere": ["command-r-plus"],
|
259 |
-
"groq": ["meta-llama/Llama-3.1-70B-Instruct"],
|
260 |
-
"novita": ["deepseek-ai/DeepSeek-V3-0324"],
|
261 |
-
"together": ["mistralai/Mixtral-8x7B-Instruct-v0.1"],
|
262 |
-
"hf-inference": ["google/gemma-2-27b-it"],
|
263 |
-
},
|
264 |
-
"vision_models": {
|
265 |
-
"cohere": ["command-r-plus-vision"],
|
266 |
-
"together": ["meta-llama/Llama-3.2-11B-Vision-Instruct"],
|
267 |
-
"hf-inference": ["microsoft/Phi-3.5-vision-instruct"],
|
268 |
-
},
|
269 |
-
}
|
270 |
-
return json.dumps(popular_models, indent=2)
|
271 |
-
|
272 |
-
|
273 |
-
@mcp.prompt()
|
274 |
-
def generate_provider_comparison_prompt(task: str = "chat") -> str:
|
275 |
-
"""Generate a prompt to help compare different inference providers.
|
276 |
-
|
277 |
-
Args:
|
278 |
-
task: The type of task to compare providers for (default: "chat")
|
279 |
-
|
280 |
-
Returns:
|
281 |
-
A prompt that can be used to get comparative analysis of providers
|
282 |
-
"""
|
283 |
-
available_providers = [
|
284 |
-
name
|
285 |
-
for name, config in PROVIDERS.items()
|
286 |
-
if f"{task}-completion" in config["tasks"]
|
287 |
]
|
288 |
|
289 |
-
providers_list = ", ".join(available_providers)
|
290 |
-
|
291 |
-
return f"""Please compare the following inference providers for {task} tasks:
|
292 |
-
|
293 |
-
Providers: {providers_list}
|
294 |
-
|
295 |
-
Consider factors like:
|
296 |
-
- Model selection and capabilities
|
297 |
-
- Performance and speed
|
298 |
-
- Pricing (if known)
|
299 |
-
- Special features or limitations
|
300 |
-
- Use case recommendations
|
301 |
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
|
305 |
if __name__ == "__main__":
|
306 |
-
#
|
307 |
-
|
308 |
-
# For production, use: mcp.run(transport="sse", host="0.0.0.0", port=8000)
|
309 |
-
mcp.run()
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
|
|
3 |
import requests
|
4 |
+
import json
|
5 |
+
from typing import List
|
|
|
|
|
|
|
6 |
|
7 |
# Inference Providers configuration
|
8 |
PROVIDERS = {
|
|
|
79 |
}
|
80 |
|
81 |
|
82 |
+
def chat_completion(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
provider: str,
|
84 |
model: str,
|
85 |
messages: str,
|
|
|
86 |
temperature: float = 0.7,
|
87 |
max_tokens: int = 512,
|
88 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
"""Generate chat completions using Hugging Face Inference Providers.
|
90 |
|
91 |
+
This tool provides access to multiple AI providers and language models
|
92 |
+
through Hugging Face's unified Inference Providers API.
|
|
|
93 |
|
94 |
Args:
|
95 |
+
provider: The inference provider to use. Available providers:
|
96 |
+
cerebras, cohere, fal-ai, featherless-ai, fireworks-ai,
|
97 |
+
groq, hf-inference, hyperbolic, nebius, novita, nscale,
|
98 |
+
replicate, sambanova, together
|
99 |
model: The model ID from Hugging Face Hub
|
100 |
(e.g., 'deepseek-ai/DeepSeek-V3-0324')
|
101 |
messages: Either a JSON array of messages in OpenAI format or
|
102 |
plain text for simple queries
|
103 |
temperature: Controls response randomness (0.0-2.0, default 0.7)
|
104 |
max_tokens: Maximum tokens in response (1-4096, default 512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
Returns:
|
107 |
The generated text response from the language model
|
108 |
"""
|
109 |
+
# Get HF token from environment
|
110 |
+
hf_token = os.getenv("HF_TOKEN")
|
111 |
+
if not hf_token:
|
112 |
+
return (
|
113 |
+
"Error: HF_TOKEN environment variable is required. "
|
114 |
+
"Please set your Hugging Face token."
|
115 |
+
)
|
116 |
|
117 |
+
# Validate provider
|
118 |
+
if provider not in PROVIDERS:
|
119 |
+
available = ", ".join(PROVIDERS.keys())
|
120 |
+
return f"Error: Unknown provider '{provider}'. Available providers: {available}"
|
121 |
|
122 |
try:
|
123 |
# Parse messages
|
124 |
if messages.strip().startswith("["):
|
125 |
parsed_messages = json.loads(messages)
|
|
|
126 |
else:
|
127 |
parsed_messages = [{"role": "user", "content": messages}]
|
|
|
128 |
|
129 |
+
# Build request payload
|
130 |
payload = {
|
131 |
"model": model,
|
132 |
"messages": parsed_messages,
|
133 |
"temperature": temperature,
|
134 |
"max_tokens": max_tokens,
|
|
|
|
|
135 |
}
|
136 |
|
137 |
+
# Make request to provider
|
138 |
+
provider_config = PROVIDERS[provider]
|
139 |
+
url = f"{provider_config['base_url']}/v1/chat/completions"
|
140 |
+
headers = {
|
141 |
+
"Authorization": f"Bearer {hf_token}",
|
142 |
+
"Content-Type": "application/json",
|
143 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
response = requests.post(url, headers=headers, json=payload, timeout=60)
|
146 |
+
response.raise_for_status()
|
147 |
+
result = response.json()
|
148 |
|
149 |
+
# Extract response
|
150 |
if "choices" in result and len(result["choices"]) > 0:
|
151 |
+
return result["choices"][0]["message"]["content"]
|
|
|
|
|
152 |
else:
|
153 |
+
return f"Error: Unexpected response format: {json.dumps(result, indent=2)}"
|
|
|
154 |
|
155 |
+
except json.JSONDecodeError:
|
156 |
+
return (
|
157 |
+
"Error: Invalid JSON format for messages. "
|
158 |
+
"Use either plain text or valid JSON array."
|
159 |
+
)
|
160 |
+
except requests.exceptions.RequestException as e:
|
161 |
+
return f"Error: Request failed: {str(e)}"
|
162 |
except Exception as e:
|
163 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
|
|
|
|
|
|
165 |
|
166 |
+
def get_providers_for_task(task: str) -> List[str]:
|
167 |
+
"""Get available providers for a specific task"""
|
168 |
+
return [
|
169 |
+
provider for provider, config in PROVIDERS.items() if task in config["tasks"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
]
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
# Create Gradio interface
|
174 |
+
with gr.Blocks(title="Inference Providers MCP Server", theme=gr.themes.Soft()) as app:
|
175 |
+
gr.Markdown("""
|
176 |
+
# 🤖 Inference Providers MCP Server
|
177 |
+
|
178 |
+
A streamlined Model Context Protocol (MCP) server for Hugging Face
|
179 |
+
Inference Providers, providing LLMs with access to multiple AI
|
180 |
+
providers through a simple, focused interface.
|
181 |
+
|
182 |
+
**Supported Providers:** Cerebras, Cohere, Fal AI, Featherless AI,
|
183 |
+
Fireworks, Groq, HF Inference, Hyperbolic, Nebius, Novita, Nscale,
|
184 |
+
Replicate, SambaNova, Together
|
185 |
+
|
186 |
+
**Required:** Set HF_TOKEN environment variable with your Hugging Face
|
187 |
+
token that has Inference Providers access.
|
188 |
+
""")
|
189 |
+
|
190 |
+
# Environment status
|
191 |
+
hf_token_status = "✅ Set" if os.getenv("HF_TOKEN") else "❌ Not Set"
|
192 |
+
gr.Markdown(f"**HF_TOKEN Status:** {hf_token_status}")
|
193 |
+
|
194 |
+
if not os.getenv("HF_TOKEN"):
|
195 |
+
gr.Markdown("""
|
196 |
+
**⚠️ Setup Required:**
|
197 |
+
1. Get token: [HF Settings](https://huggingface.co/settings/tokens)
|
198 |
+
2. Set environment: `export HF_TOKEN=hf_your_token_here`
|
199 |
+
3. Restart application
|
200 |
+
""")
|
201 |
+
|
202 |
+
with gr.Tabs():
|
203 |
+
# Chat Completion Tab
|
204 |
+
with gr.Tab("💬 Chat Completion", id="chat"):
|
205 |
+
with gr.Row():
|
206 |
+
with gr.Column(scale=1):
|
207 |
+
chat_provider = gr.Dropdown(
|
208 |
+
choices=get_providers_for_task("chat-completion"),
|
209 |
+
label="Provider",
|
210 |
+
value="novita",
|
211 |
+
info="Select inference provider",
|
212 |
+
)
|
213 |
+
chat_model = gr.Textbox(
|
214 |
+
label="Model",
|
215 |
+
value="deepseek-ai/DeepSeek-V3-0324",
|
216 |
+
placeholder="e.g., deepseek-ai/DeepSeek-V3-0324",
|
217 |
+
info="Model ID from Hugging Face Hub",
|
218 |
+
)
|
219 |
+
|
220 |
+
with gr.Column(scale=2):
|
221 |
+
chat_messages = gr.Textbox(
|
222 |
+
label="Messages",
|
223 |
+
lines=8,
|
224 |
+
placeholder=(
|
225 |
+
'[{"role": "user", "content": "Hello!"}]'
|
226 |
+
"\n\nOr just type directly"
|
227 |
+
),
|
228 |
+
info="JSON array of messages or plain text",
|
229 |
+
)
|
230 |
+
|
231 |
+
with gr.Accordion("⚙️ Parameters", open=False):
|
232 |
+
with gr.Row():
|
233 |
+
chat_temperature = gr.Slider(0.0, 2.0, 0.7, label="Temperature")
|
234 |
+
chat_max_tokens = gr.Slider(1, 4096, 512, label="Max Tokens")
|
235 |
+
|
236 |
+
chat_submit = gr.Button("🚀 Generate", variant="primary")
|
237 |
+
chat_output = gr.Textbox(label="Response", lines=10)
|
238 |
+
|
239 |
+
chat_submit.click(
|
240 |
+
chat_completion,
|
241 |
+
inputs=[
|
242 |
+
chat_provider,
|
243 |
+
chat_model,
|
244 |
+
chat_messages,
|
245 |
+
chat_temperature,
|
246 |
+
chat_max_tokens,
|
247 |
+
],
|
248 |
+
outputs=chat_output,
|
249 |
+
)
|
250 |
+
|
251 |
+
# MCP Documentation Tab
|
252 |
+
with gr.Tab("🔧 MCP Setup", id="mcp"):
|
253 |
+
gr.Markdown("""
|
254 |
+
## 🤖 MCP Server Setup
|
255 |
+
|
256 |
+
This MCP server exposes `chat_completion` tool for LLMs to access
|
257 |
+
Hugging Face Inference Providers.
|
258 |
+
|
259 |
+
### 📡 Server URL
|
260 |
+
|
261 |
+
**Local:** `http://localhost:7860/gradio_api/mcp/sse`
|
262 |
+
|
263 |
+
**HF Spaces:** `https://username-spacename.hf.space/gradio_api/mcp/sse`
|
264 |
+
|
265 |
+
### ⚙️ Client Configuration
|
266 |
+
|
267 |
+
#### Cursor IDE
|
268 |
+
|
269 |
+
Add to `.cursor/mcp.json`:
|
270 |
+
```json
|
271 |
+
{
|
272 |
+
"mcpServers": {
|
273 |
+
"inference-providers": {
|
274 |
+
"url": "YOUR_URL/gradio_api/mcp/sse"
|
275 |
+
}
|
276 |
+
}
|
277 |
+
}
|
278 |
+
```
|
279 |
+
|
280 |
+
#### Claude Desktop
|
281 |
+
|
282 |
+
Add to MCP settings:
|
283 |
+
```json
|
284 |
+
{
|
285 |
+
"mcpServers": {
|
286 |
+
"inference-providers": {
|
287 |
+
"command": "npx",
|
288 |
+
"args": [
|
289 |
+
"mcp-remote",
|
290 |
+
"YOUR_URL/gradio_api/mcp/sse",
|
291 |
+
"--transport", "sse-only"
|
292 |
+
]
|
293 |
+
}
|
294 |
+
}
|
295 |
+
}
|
296 |
+
```
|
297 |
+
|
298 |
+
### 🛠️ Tool Details
|
299 |
+
|
300 |
+
**`chat_completion`** - Generate chat responses
|
301 |
+
|
302 |
+
**Parameters:**
|
303 |
+
- `provider`: Provider name (novita, groq, etc.)
|
304 |
+
- `model`: Model ID (deepseek-ai/DeepSeek-V3-0324)
|
305 |
+
- `messages`: Input text or JSON messages
|
306 |
+
- `temperature`: Randomness (0.0-2.0, default: 0.7)
|
307 |
+
- `max_tokens`: Max length (1-4096, default: 512)
|
308 |
+
|
309 |
+
**Environment:** Requires HF_TOKEN
|
310 |
+
|
311 |
+
### 🎯 Usage
|
312 |
+
|
313 |
+
> "Use chat completion with Groq and Llama to explain Python"
|
314 |
+
|
315 |
+
### 🔗 Links
|
316 |
+
|
317 |
+
- [Cursor MCP](https://docs.cursor.com/context/model-context-protocol)
|
318 |
+
- [Gradio MCP Guide](https://huggingface.co/blog/gradio-mcp)
|
319 |
+
- [Get HF Token](https://huggingface.co/settings/tokens)
|
320 |
+
""")
|
321 |
|
322 |
|
323 |
if __name__ == "__main__":
|
324 |
+
# Enable MCP server functionality
|
325 |
+
app.launch(mcp_server=True)
|
|
|
|
pyproject.toml
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
[project]
|
2 |
name = "inference-providers-mcp"
|
3 |
version = "0.1.0"
|
4 |
-
description = "
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.11"
|
7 |
dependencies = [
|
8 |
-
"
|
|
|
9 |
"requests>=2.31.0",
|
10 |
-
"python-dotenv>=1.0.0"
|
11 |
]
|
|
|
1 |
[project]
|
2 |
name = "inference-providers-mcp"
|
3 |
version = "0.1.0"
|
4 |
+
description = "MCP Server for Hugging Face Inference Providers Chat Completion"
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.11"
|
7 |
dependencies = [
|
8 |
+
"gradio[mcp]>=5.34.0",
|
9 |
+
"huggingface_hub>=0.20.0",
|
10 |
"requests>=2.31.0",
|
11 |
+
"python-dotenv>=1.0.0",
|
12 |
]
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
|
|
|
2 |
requests>=2.31.0
|
3 |
python-dotenv>=1.0.0
|
|
|
1 |
+
gradio[mcp]>=4.0.0
|
2 |
+
huggingface_hub>=0.20.0
|
3 |
requests>=2.31.0
|
4 |
python-dotenv>=1.0.0
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|