File size: 6,746 Bytes
283dd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd8852
283dd4a
 
 
a0a0073
283dd4a
 
afd8852
283dd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import streamlit as st
import json
import numpy as np
import torch
from transformers import (
    DebertaV2Config,
    DebertaV2Model,
    DebertaV2Tokenizer,
)
import sentencepiece

model_name = "microsoft/deberta-v3-base"
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)

def preprocess_text(text, tokenizer, max_length=512):
    inputs = tokenizer(
        text,
        padding="max_length",
        truncation=True,
        max_length=max_length,
        return_tensors="pt"
    )
    return inputs


def classify_text(text, model, tokenizer, device, threshold=0.5):
    inputs = preprocess_text(text, tokenizer)
    input_ids = inputs["input_ids"].to(device)
    attention_mask = inputs["attention_mask"].to(device)
    model.eval()
    with torch.no_grad():
        logits = model(input_ids, attention_mask)
    probs = torch.sigmoid(logits)
    predictions = (probs > threshold).int().cpu().numpy()
    
    return probs.cpu().numpy(), predictions

def get_themes(text, model, tokenizer, label_to_theme, device, limit=5):
    probabilities, _ = classify_text(text, model, tokenizer, device)
    themes = []
    for label in probabilities[0].argsort()[-limit:]:
        themes.append((label_to_theme[str(label)], probabilities[0][label]))
    return themes

class DebertPaperClassifier(torch.nn.Module):
    def __init__(self, num_labels, device, dropout_rate=0.1, class_weights=None):
        super().__init__()
        self.config = DebertaV2Config.from_pretrained(model_name)
        self.deberta = DebertaV2Model.from_pretrained(model_name, config=self.config)

        self.classifier = torch.nn.Sequential(
            torch.nn.Dropout(dropout_rate),
            torch.nn.Linear(self.config.hidden_size, 512),
            torch.nn.LayerNorm(512),
            torch.nn.GELU(),
            torch.nn.Dropout(dropout_rate),
            torch.nn.Linear(512, num_labels)
        )

        self._init_weights()
        if class_weights is not None:
            self.loss_fct = torch.nn.BCEWithLogitsLoss(weight=class_weights.to(device))
        else:
            self.loss_fct = torch.nn.BCEWithLogitsLoss()

class DebertPaperClassifierV5(torch.nn.Module):
    def __init__(self, device, num_labels=47, dropout_rate=0.1, class_weights=None):
        super().__init__()
        self.config = DebertaV2Config.from_pretrained("microsoft/deberta-v3-base")
        self.deberta = DebertaV2Model.from_pretrained("microsoft/deberta-v3-base", config=self.config)
        
        self.classifier = torch.nn.Sequential(
            torch.nn.Dropout(dropout_rate),
            torch.nn.Linear(self.config.hidden_size, 512),
            torch.nn.LayerNorm(512),
            torch.nn.GELU(),
            torch.nn.Dropout(dropout_rate),
            torch.nn.Linear(512, num_labels)
        )
        
        if class_weights is not None:
            self.loss_fct = torch.nn.BCEWithLogitsLoss(weight=class_weights.to(device))
        else:
            self.loss_fct = torch.nn.BCEWithLogitsLoss()

    def forward(self, input_ids, attention_mask, labels=None):
        outputs = self.deberta(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        logits = self.classifier(outputs.last_hidden_state[:, 0, :])
        loss = None
        if labels is not None:
            loss = self.loss_fct(logits, labels)
        return (loss, logits) if loss is not None else logits

    def _init_weights(self):
        for module in self.classifier.modules():
            if isinstance(module, torch.nn.Linear):
                module.weight.data.normal_(mean=0.0, std=0.02)
                if module.bias is not None:
                    module.bias.data.zero_()

def forward(self, 
                input_ids, 
                attention_mask,
                labels=None,
               ):
        outputs = self.deberta(
            input_ids=input_ids,
            attention_mask=attention_mask
        )

        cls_output = outputs.last_hidden_state[:, 0, :]
        logits = self.classifier(cls_output)

        loss = None
        if labels is not None:
            loss = self.loss_fct(logits, labels)

        return (loss, logits) if loss is not None else logits
    
@st.cache_resource
def load_model(test=False):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    try:
        path = '/Users/bvd757/my_documents/Машинное обучение 2/Howework4'
        with open(f'{path}/label_to_theme.json', 'r') as f:
            label_to_theme = json.load(f)
    except:
        path = '/home/user/app'
        with open(f'{path}/label_to_theme.json', 'r') as f:
            label_to_theme = json.load(f)
        

    class_weights = torch.load(f'{path}/class_weights.pth').to(device)

    model = DebertPaperClassifier(device=device, num_labels=len(label_to_theme), class_weights=class_weights).to(device)
    model.load_state_dict(torch.load(f"{path}/full_model_v4.pth", map_location=device))
    if test:
        print(device)
        print(model)
        print("Model!!!")
        text = 'We propose an architecture for VQA which utilizes recurrent layers to\ngenerate visual and textual attention. The memory characteristic of the\nproposed recurrent attention units offers a rich joint embedding of visual and\ntextual features and enables the model to reason relations between several\nparts of the image and question. Our single model outperforms the first place\nwinner on the VQA 1.0 dataset, performs within margin to the current\nstate-of-the-art ensemble model. We also experiment with replacing attention\nmechanisms in other state-of-the-art models with our implementation and show\nincreased accuracy. In both cases, our recurrent attention mechanism improves\nperformance in tasks requiring sequential or relational reasoning on the VQA\ndataset.'
        print(get_themes(text, model, tokenizer, label_to_theme, device))
    return model, tokenizer, label_to_theme, device

def kek():
    
    title = st.text_input("Title")
    abstract = st.text_area("Abstract")
    
    if st.button("Classify"):
        if not title and not abstract:
            st.warning("Please enter an abstract")
            return
        
        text = f"{title}\n\n{abstract}" if title and abstract else title or abstract
        model, tokenizer, label_to_theme, device = load_model()
        
        with st.spinner("Classifying..."):
            themes = get_themes(text, model, tokenizer, label_to_theme, device, lim)
        
        st.success("Classification results:")
        for theme, prob in themes:
            st.write(f"- {theme}: {prob:.2%}")


if __name__ == "__main__":
    inp = '0'
    if inp != '0':
        kek()
    else:
        load_model(True)