Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,11 @@ from typing import Iterator, Union, Any
|
|
5 |
import fasttext
|
6 |
import gradio as gr
|
7 |
from dotenv import load_dotenv
|
8 |
-
from httpx import Client, Timeout
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from huggingface_hub.utils import logging
|
11 |
from toolz import concat, groupby, valmap
|
12 |
-
from fastapi import FastAPI
|
13 |
-
from httpx import AsyncClient
|
14 |
from pathlib import Path
|
15 |
|
16 |
-
app = FastAPI()
|
17 |
logger = logging.get_logger(__name__)
|
18 |
load_dotenv()
|
19 |
|
@@ -23,7 +19,6 @@ def load_model(repo_id: str) -> fasttext.FastText._FastText:
|
|
23 |
model_path = hf_hub_download(repo_id, filename="model.bin")
|
24 |
return fasttext.load_model(model_path)
|
25 |
|
26 |
-
|
27 |
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
|
28 |
for row in rows:
|
29 |
if isinstance(row, str):
|
@@ -42,10 +37,9 @@ def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterat
|
|
42 |
except TypeError:
|
43 |
continue
|
44 |
|
45 |
-
|
46 |
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
|
47 |
|
48 |
-
#
|
49 |
Path("code/models").mkdir(parents=True, exist_ok=True)
|
50 |
model = fasttext.load_model(
|
51 |
hf_hub_download(
|
@@ -57,7 +51,6 @@ model = fasttext.load_model(
|
|
57 |
)
|
58 |
)
|
59 |
|
60 |
-
|
61 |
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
|
62 |
predictions = model.predict(inputs, k=k)
|
63 |
return [
|
@@ -65,103 +58,163 @@ def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
|
|
65 |
for label, prob in zip(predictions[0], predictions[1])
|
66 |
]
|
67 |
|
68 |
-
|
69 |
def get_label(x):
|
70 |
return x.get("label")
|
71 |
|
72 |
-
|
73 |
def get_mean_score(preds):
|
74 |
return mean([pred.get("score") for pred in preds])
|
75 |
|
76 |
-
|
77 |
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
|
78 |
"""Filter a dict to include items whose value is above `threshold_percent`"""
|
79 |
total = sum(counts_dict.values())
|
80 |
threshold = total * threshold_percent
|
81 |
return {k for k, v in counts_dict.items() if v >= threshold}
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
)
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
5 |
import fasttext
|
6 |
import gradio as gr
|
7 |
from dotenv import load_dotenv
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from huggingface_hub.utils import logging
|
10 |
from toolz import concat, groupby, valmap
|
|
|
|
|
11 |
from pathlib import Path
|
12 |
|
|
|
13 |
logger = logging.get_logger(__name__)
|
14 |
load_dotenv()
|
15 |
|
|
|
19 |
model_path = hf_hub_download(repo_id, filename="model.bin")
|
20 |
return fasttext.load_model(model_path)
|
21 |
|
|
|
22 |
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
|
23 |
for row in rows:
|
24 |
if isinstance(row, str):
|
|
|
37 |
except TypeError:
|
38 |
continue
|
39 |
|
|
|
40 |
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
|
41 |
|
42 |
+
# Load the model
|
43 |
Path("code/models").mkdir(parents=True, exist_ok=True)
|
44 |
model = fasttext.load_model(
|
45 |
hf_hub_download(
|
|
|
51 |
)
|
52 |
)
|
53 |
|
|
|
54 |
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
|
55 |
predictions = model.predict(inputs, k=k)
|
56 |
return [
|
|
|
58 |
for label, prob in zip(predictions[0], predictions[1])
|
59 |
]
|
60 |
|
|
|
61 |
def get_label(x):
|
62 |
return x.get("label")
|
63 |
|
|
|
64 |
def get_mean_score(preds):
|
65 |
return mean([pred.get("score") for pred in preds])
|
66 |
|
|
|
67 |
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
|
68 |
"""Filter a dict to include items whose value is above `threshold_percent`"""
|
69 |
total = sum(counts_dict.values())
|
70 |
threshold = total * threshold_percent
|
71 |
return {k for k, v in counts_dict.items() if v >= threshold}
|
72 |
|
73 |
+
def simple_predict(text, num_predictions=3):
|
74 |
+
"""Simple language detection function for Gradio interface"""
|
75 |
+
if not text or not text.strip():
|
76 |
+
return "Please enter some text for language detection."
|
77 |
+
|
78 |
+
try:
|
79 |
+
# Clean the text
|
80 |
+
cleaned_lines = list(yield_clean_rows([text]))
|
81 |
+
if not cleaned_lines:
|
82 |
+
return "No valid text found after cleaning."
|
83 |
+
|
84 |
+
# Get predictions for each line
|
85 |
+
all_predictions = []
|
86 |
+
for line in cleaned_lines:
|
87 |
+
predictions = model_predict(line, k=num_predictions)
|
88 |
+
all_predictions.extend(predictions)
|
89 |
+
|
90 |
+
if not all_predictions:
|
91 |
+
return "No predictions could be made."
|
92 |
+
|
93 |
+
# Group predictions by language
|
94 |
+
predictions_by_lang = groupby(get_label, all_predictions)
|
95 |
+
language_counts = valmap(len, predictions_by_lang)
|
96 |
+
|
97 |
+
# Calculate average scores for each language
|
98 |
+
language_scores = valmap(get_mean_score, predictions_by_lang)
|
99 |
+
|
100 |
+
# Format results
|
101 |
+
results = {
|
102 |
+
"detected_languages": dict(language_scores),
|
103 |
+
"language_counts": dict(language_counts),
|
104 |
+
"total_predictions": len(all_predictions),
|
105 |
+
"text_lines_analyzed": len(cleaned_lines)
|
106 |
+
}
|
107 |
+
|
108 |
+
return results
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
return f"Error during prediction: {str(e)}"
|
112 |
+
|
113 |
+
def batch_predict(text, threshold_percent=0.2):
|
114 |
+
"""More advanced prediction with filtering"""
|
115 |
+
if not text or not text.strip():
|
116 |
+
return "Please enter some text for language detection."
|
117 |
+
|
118 |
+
try:
|
119 |
+
# Clean the text
|
120 |
+
cleaned_lines = list(yield_clean_rows([text]))
|
121 |
+
if not cleaned_lines:
|
122 |
+
return "No valid text found after cleaning."
|
123 |
+
|
124 |
+
# Get predictions
|
125 |
+
predictions = [model_predict(line) for line in cleaned_lines]
|
126 |
+
predictions = [pred for pred in predictions if pred is not None]
|
127 |
+
predictions = list(concat(predictions))
|
128 |
+
|
129 |
+
if not predictions:
|
130 |
+
return "No predictions could be made."
|
131 |
+
|
132 |
+
# Group and filter
|
133 |
+
predictions_by_lang = groupby(get_label, predictions)
|
134 |
+
language_counts = valmap(len, predictions_by_lang)
|
135 |
+
keys_to_keep = filter_by_frequency(language_counts, threshold_percent=threshold_percent)
|
136 |
+
filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
|
137 |
+
|
138 |
+
results = {
|
139 |
+
"predictions": dict(valmap(get_mean_score, filtered_dict)),
|
140 |
+
"all_language_counts": dict(language_counts),
|
141 |
+
"filtered_languages": list(keys_to_keep),
|
142 |
+
"threshold_used": threshold_percent
|
143 |
+
}
|
144 |
+
|
145 |
+
return results
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
return f"Error during prediction: {str(e)}"
|
149 |
+
|
150 |
+
def build_demo_interface():
|
151 |
+
app_title = "Language Detection Tool"
|
152 |
+
with gr.Blocks(title=app_title) as demo:
|
153 |
+
gr.Markdown(f"# {app_title}")
|
154 |
+
gr.Markdown("Enter text below to detect the language(s) it contains.")
|
155 |
+
|
156 |
+
with gr.Tab("Simple Detection"):
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Column():
|
159 |
+
text_input1 = gr.Textbox(
|
160 |
+
label="Enter text for language detection",
|
161 |
+
placeholder="Type or paste your text here...",
|
162 |
+
lines=5
|
163 |
+
)
|
164 |
+
num_predictions = gr.Slider(
|
165 |
+
minimum=1,
|
166 |
+
maximum=10,
|
167 |
+
value=3,
|
168 |
+
step=1,
|
169 |
+
label="Number of top predictions per line"
|
170 |
+
)
|
171 |
+
predict_btn1 = gr.Button("Detect Language")
|
172 |
+
|
173 |
+
with gr.Column():
|
174 |
+
output1 = gr.JSON(label="Detection Results")
|
175 |
+
|
176 |
+
predict_btn1.click(
|
177 |
+
simple_predict,
|
178 |
+
inputs=[text_input1, num_predictions],
|
179 |
+
outputs=output1
|
180 |
)
|
181 |
+
|
182 |
+
with gr.Tab("Advanced Detection"):
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column():
|
185 |
+
text_input2 = gr.Textbox(
|
186 |
+
label="Enter text for advanced language detection",
|
187 |
+
placeholder="Type or paste your text here...",
|
188 |
+
lines=5
|
189 |
+
)
|
190 |
+
threshold = gr.Slider(
|
191 |
+
minimum=0.1,
|
192 |
+
maximum=1.0,
|
193 |
+
value=0.2,
|
194 |
+
step=0.1,
|
195 |
+
label="Threshold percentage for filtering"
|
196 |
+
)
|
197 |
+
predict_btn2 = gr.Button("Advanced Detect")
|
198 |
+
|
199 |
+
with gr.Column():
|
200 |
+
output2 = gr.JSON(label="Advanced Detection Results")
|
201 |
+
|
202 |
+
predict_btn2.click(
|
203 |
+
batch_predict,
|
204 |
+
inputs=[text_input2, threshold],
|
205 |
+
outputs=output2
|
206 |
+
)
|
207 |
+
|
208 |
+
gr.Markdown("### About")
|
209 |
+
gr.Markdown("This tool uses Facebook's FastText language identification model to detect languages in text.")
|
210 |
+
|
211 |
+
return demo
|
212 |
+
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
demo = build_demo_interface()
|
216 |
+
demo.launch(
|
217 |
+
server_name="0.0.0.0",
|
218 |
+
server_port=7860,
|
219 |
+
share=False
|
220 |
+
)
|