Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
3 |
+
from huggingface_hub.repocard import metadata_load
|
4 |
+
import requests
|
5 |
+
import re
|
6 |
+
import pandas as pd
|
7 |
+
from huggingface_hub import ModelCard
|
8 |
+
import os
|
9 |
+
|
10 |
+
def pass_emoji(passed):
|
11 |
+
if passed is True:
|
12 |
+
passed = "✅"
|
13 |
+
else:
|
14 |
+
passed = "❌"
|
15 |
+
return passed
|
16 |
+
|
17 |
+
api = HfApi()
|
18 |
+
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
+
|
21 |
+
def get_user_models(hf_username, task):
|
22 |
+
"""
|
23 |
+
List the user's models for a given task
|
24 |
+
:param hf_username: User HF username
|
25 |
+
"""
|
26 |
+
models = api.list_models(author=hf_username, filter=[task])
|
27 |
+
user_model_ids = [x.modelId for x in models]
|
28 |
+
|
29 |
+
match task:
|
30 |
+
case "audio-classification":
|
31 |
+
dataset = 'marsyas/gtzan'
|
32 |
+
case "automatic-speech-recognition":
|
33 |
+
dataset = 'PolyAI/minds14'
|
34 |
+
case "text-to-speech":
|
35 |
+
dataset = ""
|
36 |
+
case _:
|
37 |
+
print("Unsupported task")
|
38 |
+
|
39 |
+
dataset_specific_models = []
|
40 |
+
|
41 |
+
if dataset == "":
|
42 |
+
return user_model_ids
|
43 |
+
else:
|
44 |
+
for model in user_model_ids:
|
45 |
+
meta = get_metadata(model)
|
46 |
+
if meta is None:
|
47 |
+
continue
|
48 |
+
try:
|
49 |
+
if meta["datasets"] == [dataset]:
|
50 |
+
dataset_specific_models.append(model)
|
51 |
+
except:
|
52 |
+
continue
|
53 |
+
return dataset_specific_models
|
54 |
+
|
55 |
+
def calculate_best_result(user_models, task):
|
56 |
+
"""
|
57 |
+
Calculate the best results of a unit for a given task
|
58 |
+
:param user_model_ids: models of a user
|
59 |
+
"""
|
60 |
+
|
61 |
+
best_model = ""
|
62 |
+
|
63 |
+
if task == "audio-classification":
|
64 |
+
best_result = -100
|
65 |
+
larger_is_better = True
|
66 |
+
elif task == "automatic-speech-recognition":
|
67 |
+
best_result = 100
|
68 |
+
larger_is_better = False
|
69 |
+
|
70 |
+
for model in user_models:
|
71 |
+
meta = get_metadata(model)
|
72 |
+
if meta is None:
|
73 |
+
continue
|
74 |
+
metric = parse_metrics(model, task)
|
75 |
+
|
76 |
+
if metric == None:
|
77 |
+
continue
|
78 |
+
|
79 |
+
if larger_is_better:
|
80 |
+
if metric > best_result:
|
81 |
+
best_result = metric
|
82 |
+
best_model = meta['model-index'][0]["name"]
|
83 |
+
else:
|
84 |
+
if metric < best_result:
|
85 |
+
best_result = metric
|
86 |
+
best_model = meta['model-index'][0]["name"]
|
87 |
+
|
88 |
+
return best_result, best_model
|
89 |
+
|
90 |
+
|
91 |
+
def get_metadata(model_id):
|
92 |
+
"""
|
93 |
+
Get model metadata (contains evaluation data)
|
94 |
+
:param model_id
|
95 |
+
"""
|
96 |
+
try:
|
97 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
98 |
+
return metadata_load(readme_path)
|
99 |
+
except requests.exceptions.HTTPError:
|
100 |
+
# 404 README.md not found
|
101 |
+
return None
|
102 |
+
|
103 |
+
|
104 |
+
def extract_metric(model_card_content, task):
|
105 |
+
"""
|
106 |
+
Extract the metric value from the models' model card
|
107 |
+
:param model_card_content: model card content
|
108 |
+
"""
|
109 |
+
accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)"
|
110 |
+
wer_pattern = r"Wer: (\d+\.\d+)"
|
111 |
+
|
112 |
+
if task == "audio-classification":
|
113 |
+
pattern = accuracy_pattern
|
114 |
+
elif task == "automatic-speech-recognition":
|
115 |
+
pattern = wer_pattern
|
116 |
+
|
117 |
+
match = re.search(pattern, model_card_content)
|
118 |
+
if match:
|
119 |
+
metric = match.group(1)
|
120 |
+
return float(metric)
|
121 |
+
else:
|
122 |
+
return None
|
123 |
+
|
124 |
+
|
125 |
+
def parse_metrics(model, task):
|
126 |
+
"""
|
127 |
+
Get model card and parse it
|
128 |
+
:param model_id: model id
|
129 |
+
"""
|
130 |
+
card = ModelCard.load(model)
|
131 |
+
return extract_metric(card.content, task)
|
132 |
+
|
133 |
+
|
134 |
+
def certification(hf_username):
|
135 |
+
results_certification = [
|
136 |
+
{
|
137 |
+
"unit": "Unit 4: Audio Classification",
|
138 |
+
"task": "audio-classification",
|
139 |
+
"baseline_metric": 0.87,
|
140 |
+
"best_result": 0,
|
141 |
+
"best_model_id": "",
|
142 |
+
"passed_": False
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"unit": "Unit 5: Automatic Speech Recognition",
|
146 |
+
"task": "automatic-speech-recognition",
|
147 |
+
"baseline_metric": 0.37,
|
148 |
+
"best_result": 0,
|
149 |
+
"best_model_id": "",
|
150 |
+
"passed_": False
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"unit": "Unit 6: Text-to-Speech",
|
154 |
+
"task": "text-to-speech",
|
155 |
+
"baseline_metric": 0,
|
156 |
+
"best_result": 0,
|
157 |
+
"best_model_id": "",
|
158 |
+
"passed_": False
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"unit": "Unit 7: Audio applications",
|
162 |
+
"task": "demo",
|
163 |
+
"baseline_metric": 0,
|
164 |
+
"best_result": 0,
|
165 |
+
"best_model_id": "",
|
166 |
+
"passed_": False
|
167 |
+
},
|
168 |
+
]
|
169 |
+
|
170 |
+
for unit in results_certification:
|
171 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
172 |
+
|
173 |
+
match unit["task"]:
|
174 |
+
case "audio-classification":
|
175 |
+
try:
|
176 |
+
user_ac_models = get_user_models(hf_username, task = "audio-classification")
|
177 |
+
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification")
|
178 |
+
unit["best_result"] = best_result
|
179 |
+
unit["best_model_id"] = best_model_id
|
180 |
+
if unit["best_result"] >= unit["baseline_metric"]:
|
181 |
+
unit["passed_"] = True
|
182 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
183 |
+
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton")
|
184 |
+
case "automatic-speech-recognition":
|
185 |
+
try:
|
186 |
+
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition")
|
187 |
+
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition")
|
188 |
+
unit["best_result"] = best_result
|
189 |
+
unit["best_model_id"] = best_model_id
|
190 |
+
if unit["best_result"] <= unit["baseline_metric"]:
|
191 |
+
unit["passed_"] = True
|
192 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
193 |
+
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
194 |
+
case "text-to-speech":
|
195 |
+
try:
|
196 |
+
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
|
197 |
+
if user_tts_models:
|
198 |
+
unit["best_result"] = 0
|
199 |
+
unit["best_model_id"] = user_tts_models[0]
|
200 |
+
unit["passed_"] = True
|
201 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
202 |
+
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
203 |
+
case "demo":
|
204 |
+
u7_usernames = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN)
|
205 |
+
u7_users = pd.read_csv(u7_usernames)
|
206 |
+
if hf_username in u7_users['username'].tolist():
|
207 |
+
unit["best_result"] = 0
|
208 |
+
unit["best_model_id"] = "Demo check passed, no model id"
|
209 |
+
unit["passed_"] = True
|
210 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
211 |
+
case _:
|
212 |
+
print("Unknown task")
|
213 |
+
|
214 |
+
print(results_certification)
|
215 |
+
|
216 |
+
df = pd.DataFrame(results_certification)
|
217 |
+
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
218 |
+
return df
|
219 |
+
|
220 |
+
with gr.Blocks() as demo:
|
221 |
+
gr.Markdown("""
|
222 |
+
# 🏆 Check your progress in the Audio Course 🏆
|
223 |
+
- To get a certificate of completion, you must **pass 3 out of 4 assignments**.
|
224 |
+
- To get an honors certificate, you must **pass 4 out of 4 assignments**.
|
225 |
+
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric.
|
226 |
+
For the Unit 7 assignment, first, check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment)
|
227 |
+
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public.
|
228 |
+
To check your progress, type your Hugging Face Username here (in my case MariaK)
|
229 |
+
""")
|
230 |
+
|
231 |
+
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
|
232 |
+
check_progress_button = gr.Button(value="Check my progress")
|
233 |
+
|
234 |
+
def check_progress():
|
235 |
+
output.set_text(certification(hf_username.text))
|
236 |
+
|
237 |
+
check_progress_button.click(check_progress)
|
238 |
+
output = gr.Textbox(value="")
|
239 |
+
|
240 |
+
demo.launch()
|