Spaces:
Running
Running
File size: 21,107 Bytes
31c1396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import torch
from typing import Optional
from PIL import Image
from diffusers import AutoencoderKL, EulerDiscreteScheduler, EDMDPMSolverMultistepScheduler
from transformers import (
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
)
from scipy.spatial.distance import cdist
import numpy as np
import unet.pipeline_stable_diffusion_xl as pipeline_stable_diffusion_xl
from torch.fft import fftn, fftshift, ifftn, ifftshift
from typing import Optional, Tuple
from unet.unet import UNet2DConditionModel
from unet.unet_controller import UNetController
def ipca(q, k, v, scale, unet_controller: Optional[UNetController] = None): # eg. q: [4,20,1024,64] k,v: [4,20,77,64]
q_neg, q_pos = torch.split(q, q.size(0) // 2, dim=0)
k_neg, k_pos = torch.split(k, k.size(0) // 2, dim=0)
v_neg, v_pos = torch.split(v, v.size(0) // 2, dim=0)
# 1. negative_attn
scores_neg = torch.matmul(q_neg, k_neg.transpose(-2, -1)) * scale
attn_weights_neg = torch.softmax(scores_neg, dim=-1)
attn_output_neg = torch.matmul(attn_weights_neg, v_neg)
# 2. positive_attn (we do ipca only on positive branch)
# 2.1 ipca
k_plus = torch.cat(tuple(k_pos.transpose(-2, -1)), dim=2).unsqueeze(0).repeat(k_pos.size(0),1,1,1) # πΎ+ = [πΎ1 β πΎ2 β . . . β πΎπ ]
v_plus = torch.cat(tuple(v_pos), dim=1).unsqueeze(0).repeat(v_pos.size(0),1,1,1) # π+ = [π1 β π2 β . . . β ππ ]
# 2.2 apply mask
if unet_controller is not None:
scores_pos = torch.matmul(q_pos, k_plus) * scale
# 2.2.1 apply dropout mask
dropout_mask = gen_dropout_mask(scores_pos.shape, unet_controller, unet_controller.Ipca_dropout) # eg: [a,1024,154]
# 2.2.3 apply embeds mask
if unet_controller.Use_embeds_mask:
apply_embeds_mask(unet_controller,dropout_mask, add_eot=False)
mask = dropout_mask
mask = mask.unsqueeze(1).repeat(1,scores_pos.size(1),1,1)
attn_weights_pos = torch.softmax(scores_pos + torch.log(mask), dim=-1)
else:
scores_pos = torch.matmul(q_pos, k_plus) * scale
attn_weights_pos = torch.softmax(scores_pos, dim=-1)
attn_output_pos = torch.matmul(attn_weights_pos, v_plus)
# 3. combine
attn_output = torch.cat((attn_output_neg, attn_output_pos), dim=0)
return attn_output
def ipca2(q, k, v, scale, unet_controller: Optional[UNetController] = None): # eg. q: [4,20,1024,64] k,v: [4,20,77,64]
if unet_controller.ipca_time_step != unet_controller.current_time_step:
unet_controller.ipca_time_step = unet_controller.current_time_step
unet_controller.ipca2_index = 0
else:
unet_controller.ipca2_index += 1
if unet_controller.Store_qkv is True:
key = f"cross {unet_controller.current_time_step} {unet_controller.current_unet_position} {unet_controller.ipca2_index}"
unet_controller.k_store[key] = k
unet_controller.v_store[key] = v
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
attn_weights = torch.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, v)
else:
# batch > 1
if unet_controller.frame_prompt_express_list is not None:
batch_size = q.size(0) // 2
attn_output_list = []
for i in range(batch_size):
q_i = q[[i, i + batch_size], :, :, :]
k_i = k[[i, i + batch_size], :, :, :]
v_i = v[[i, i + batch_size], :, :, :]
q_neg_i, q_pos_i = torch.split(q_i, q_i.size(0) // 2, dim=0)
k_neg_i, k_pos_i = torch.split(k_i, k_i.size(0) // 2, dim=0)
v_neg_i, v_pos_i = torch.split(v_i, v_i.size(0) // 2, dim=0)
key = f"cross {unet_controller.current_time_step} {unet_controller.current_unet_position} {unet_controller.ipca2_index}"
q_store = q_i
k_store = unet_controller.k_store[key]
v_store = unet_controller.v_store[key]
q_store_neg, q_store_pos = torch.split(q_store, q_store.size(0) // 2, dim=0)
k_store_neg, k_store_pos = torch.split(k_store, k_store.size(0) // 2, dim=0)
v_store_neg, v_store_pos = torch.split(v_store, v_store.size(0) // 2, dim=0)
q_neg = torch.cat((q_neg_i, q_store_neg), dim=0)
q_pos = torch.cat((q_pos_i, q_store_pos), dim=0)
k_neg = torch.cat((k_neg_i, k_store_neg), dim=0)
k_pos = torch.cat((k_pos_i, k_store_pos), dim=0)
v_neg = torch.cat((v_neg_i, v_store_neg), dim=0)
v_pos = torch.cat((v_pos_i, v_store_pos), dim=0)
q_i = torch.cat((q_neg, q_pos), dim=0)
k_i = torch.cat((k_neg, k_pos), dim=0)
v_i = torch.cat((v_neg, v_pos), dim=0)
attn_output_i = ipca(q_i, k_i, v_i, scale, unet_controller)
attn_output_i = attn_output_i[[0, 2], :, :, :]
attn_output_list.append(attn_output_i)
attn_output_ = torch.cat(attn_output_list, dim=0)
attn_output = torch.zeros(size=(q.size(0), attn_output_i.size(1), attn_output_i.size(2), attn_output_i.size(3)), device=q.device, dtype=q.dtype)
for i in range(batch_size):
attn_output[i] = attn_output_[i*2]
for i in range(batch_size):
attn_output[i + batch_size] = attn_output_[i*2 + 1]
# batch = 1
else:
q_neg, q_pos = torch.split(q, q.size(0) // 2, dim=0)
k_neg, k_pos = torch.split(k, k.size(0) // 2, dim=0)
v_neg, v_pos = torch.split(v, v.size(0) // 2, dim=0)
key = f"cross {unet_controller.current_time_step} {unet_controller.current_unet_position} {unet_controller.ipca2_index}"
q_store = q
k_store = unet_controller.k_store[key]
v_store = unet_controller.v_store[key]
q_store_neg, q_store_pos = torch.split(q_store, q_store.size(0) // 2, dim=0)
k_store_neg, k_store_pos = torch.split(k_store, k_store.size(0) // 2, dim=0)
v_store_neg, v_store_pos = torch.split(v_store, v_store.size(0) // 2, dim=0)
q_neg = torch.cat((q_neg, q_store_neg), dim=0)
q_pos = torch.cat((q_pos, q_store_pos), dim=0)
k_neg = torch.cat((k_neg, k_store_neg), dim=0)
k_pos = torch.cat((k_pos, k_store_pos), dim=0)
v_neg = torch.cat((v_neg, v_store_neg), dim=0)
v_pos = torch.cat((v_pos, v_store_pos), dim=0)
q = torch.cat((q_neg, q_pos), dim=0)
k = torch.cat((k_neg, k_pos), dim=0)
v = torch.cat((v_neg, v_pos), dim=0)
attn_output = ipca(q, k, v, scale, unet_controller)
attn_output = attn_output[[0, 2], :, :, :]
return attn_output
def apply_embeds_mask(unet_controller: Optional[UNetController],dropout_mask, add_eot=False):
id_prompt = unet_controller.id_prompt
prompt_tokens = prompt2tokens(unet_controller.tokenizer,unet_controller.prompts[0])
words_tokens = prompt2tokens(unet_controller.tokenizer,id_prompt)
words_tokens = [word for word in words_tokens if word != '<|endoftext|>' and word != '<|startoftext|>']
index_of_words = find_sublist_index(prompt_tokens,words_tokens)
index_list = [index+77 for index in range(index_of_words, index_of_words+len(words_tokens))]
if add_eot:
index_list.extend([index+77 for index, word in enumerate(prompt_tokens) if word == '<|endoftext|>'])
mask_indices = torch.arange(dropout_mask.size(-1), device=dropout_mask.device)
mask = (mask_indices >= 78) & (~torch.isin(mask_indices, torch.tensor(index_list, device=dropout_mask.device)))
dropout_mask[0, :, mask] = 0
def gen_dropout_mask(out_shape, unet_controller: Optional[UNetController], drop_out):
gen_length = out_shape[3]
attn_map_side_length = out_shape[2]
batch_num = out_shape[0]
mask_list = []
for prompt_index in range(batch_num):
start = prompt_index * int(gen_length / batch_num)
end = (prompt_index + 1) * int(gen_length / batch_num)
mask = torch.bernoulli(torch.full((attn_map_side_length,gen_length), 1 - drop_out, dtype=unet_controller.torch_dtype, device=unet_controller.device))
mask[:, start:end] = 1
mask_list.append(mask)
concatenated_mask = torch.stack(mask_list, dim=0)
return concatenated_mask
def load_pipe_from_path(model_path, device, torch_dtype, variant):
model_name = model_path.split('/')[-1]
if model_path.split('/')[-1] == 'playground-v2.5-1024px-aesthetic':
scheduler = EDMDPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=torch_dtype, variant=variant,)
else:
scheduler = EulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=torch_dtype, variant=variant,)
if model_path.split('/')[-1] == 'Juggernaut-X-v10' or model_path.split('/')[-1] == 'Juggernaut-XI-v11':
variant = None
vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae", torch_dtype=torch_dtype, variant=variant,)
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=torch_dtype, variant=variant,)
tokenizer_2 = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer_2", torch_dtype=torch_dtype, variant=variant,)
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=torch_dtype, variant=variant,)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder_2", torch_dtype=torch_dtype, variant=variant,)
unet_new = UNet2DConditionModel.from_pretrained(model_path, subfolder="unet", torch_dtype=torch_dtype, variant=variant,)
pipe = pipeline_stable_diffusion_xl.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet_new,
scheduler=scheduler,
)
pipe.to(device)
return pipe, model_name
def get_max_window_length(unet_controller: Optional[UNetController],id_prompt, frame_prompt_list):
single_long_prompt = id_prompt
max_window_length = 0
for index, movement in enumerate(frame_prompt_list):
single_long_prompt += ' ' + movement
token_length = len(single_long_prompt.split())
if token_length >= 77:
break
max_window_length += 1
return max_window_length
def movement_gen_story_slide_windows(id_prompt, frame_prompt_list, pipe, window_length, seed, unet_controller: Optional[UNetController], save_dir, verbose=True):
import os
max_window_length = get_max_window_length(unet_controller,id_prompt,frame_prompt_list)
window_length = min(window_length,max_window_length)
if window_length < len(frame_prompt_list):
movement_lists = circular_sliding_windows(frame_prompt_list, window_length)
else:
movement_lists = [movement for movement in frame_prompt_list]
story_images = []
if verbose:
print("seed:", seed)
generate = torch.Generator().manual_seed(seed)
unet_controller.id_prompt = id_prompt
for index, movement in enumerate(frame_prompt_list):
if unet_controller is not None:
if window_length < len(frame_prompt_list):
unet_controller.frame_prompt_suppress = movement_lists[index][1:]
unet_controller.frame_prompt_express = movement_lists[index][0]
gen_propmts = [f'{id_prompt} {" ".join(movement_lists[index])}']
else:
unet_controller.frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
unet_controller.frame_prompt_express = movement_lists[index]
gen_propmts = [f'{id_prompt} {" ".join(movement_lists)}']
if verbose:
print(f"suppress: {unet_controller.frame_prompt_suppress}")
print(f"express: {unet_controller.frame_prompt_express}")
print(f'id_prompt: {id_prompt}')
print(f"gen_propmts: {gen_propmts}")
else:
gen_propmts = f'{id_prompt} {movement}'
if unet_controller is not None and unet_controller.Use_same_init_noise is True:
generate = torch.Generator().manual_seed(seed)
images = pipe(gen_propmts, generator=generate, unet_controller=unet_controller).images
story_images.append(images[0])
images[0].save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express}.jpg'))
image_array_list = [np.array(pil_img) for pil_img in story_images]
# Concatenate images horizontally
story_image = np.concatenate(image_array_list, axis=1)
story_image = Image.fromarray(story_image.astype(np.uint8))
if unet_controller.Save_story_image:
story_image.save(os.path.join(save_dir, f'story_image_{id_prompt}.jpg'))
return story_images, story_image
# this function set batch > 1 to generate multiple images at once
def movement_gen_story_slide_windows_batch(id_prompt, frame_prompt_list, pipe, window_length, seed, unet_controller: Optional[UNetController], save_dir, batch_size=3):
import os
max_window_length = get_max_window_length(unet_controller,id_prompt,frame_prompt_list)
window_length = min(window_length,max_window_length)
if window_length < len(frame_prompt_list):
movement_lists = circular_sliding_windows(frame_prompt_list, window_length)
else:
movement_lists = [movement for movement in frame_prompt_list]
story_images = []
print("seed:", seed)
generate = torch.Generator().manual_seed(seed)
unet_controller.id_prompt = id_prompt
gen_prompt_info_list = []
gen_prompt = None
for index, _ in enumerate(frame_prompt_list):
if window_length < len(frame_prompt_list):
frame_prompt_suppress = movement_lists[index][1:]
frame_prompt_express = movement_lists[index][0]
gen_prompt = f'{id_prompt} {" ".join(movement_lists[index])}'
else:
frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
frame_prompt_express = movement_lists[index]
gen_prompt = f'{id_prompt} {" ".join(movement_lists)}'
gen_prompt_info_list.append({'frame_prompt_suppress': frame_prompt_suppress, 'frame_prompt_express': frame_prompt_express})
story_images = []
for i in range(0, len(gen_prompt_info_list), batch_size):
batch = gen_prompt_info_list[i:i + batch_size]
gen_prompts = [gen_prompt for _ in batch]
unet_controller.frame_prompt_express_list = [gen_prompt_info['frame_prompt_express'] for gen_prompt_info in batch]
unet_controller.frame_prompt_suppress_list = [gen_prompt_info['frame_prompt_suppress'] for gen_prompt_info in batch]
if unet_controller is not None and unet_controller.Use_same_init_noise is True:
generate = torch.Generator().manual_seed(seed)
images = pipe(gen_prompts, generator=generate, unet_controller=unet_controller).images
for index,image in enumerate(images):
story_images.append(image)
image.save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express_list[index]}.jpg'))
image_array_list = [np.array(pil_img) for pil_img in story_images]
# Concatenate images horizontally
story_image = np.concatenate(image_array_list, axis=1)
story_image = Image.fromarray(story_image.astype(np.uint8))
if unet_controller.Save_story_image:
story_image.save(os.path.join(save_dir, 'story_image.jpg'))
return story_images, story_image
def prompt2tokens(tokenizer, prompt):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
tokens = []
for text_input_id in text_input_ids[0]:
token = tokenizer.decoder[text_input_id.item()]
tokens.append(token)
return tokens
def punish_wight(tensor, latent_size, alpha=1.0, beta=1.2, calc_similarity=False):
u, s, vh = torch.linalg.svd(tensor)
u = u[:,:latent_size]
zero_idx = int(latent_size * alpha)
if calc_similarity:
_s = s.clone()
_s *= torch.exp(-alpha*_s) * beta
_s[zero_idx:] = 0
_tensor = u @ torch.diag(_s) @ vh
dist = cdist(tensor[:,0].unsqueeze(0).cpu(), _tensor[:,0].unsqueeze(0).cpu(), metric='cosine')
print(f'The distance between the word embedding before and after the punishment: {dist}')
s *= torch.exp(-alpha*s) * beta
tensor = u @ torch.diag(s) @ vh
return tensor
def swr_single_prompt_embeds(swr_words,prompt_embeds,prompt,tokenizer,alpha=1.0, beta=1.2, zero_eot=False):
punish_indices = []
prompt_tokens = prompt2tokens(tokenizer,prompt)
words_tokens = prompt2tokens(tokenizer,swr_words)
words_tokens = [word for word in words_tokens if word != '<|endoftext|>' and word != '<|startoftext|>']
index_of_words = find_sublist_index(prompt_tokens,words_tokens)
if index_of_words != -1:
punish_indices.extend([num for num in range(index_of_words, index_of_words+len(words_tokens))])
if zero_eot:
eot_indices = [index for index, word in enumerate(prompt_tokens) if word == '<|endoftext|>']
prompt_embeds[eot_indices] *= 9e-1
pass
else:
punish_indices.extend([index for index, word in enumerate(prompt_tokens) if word == '<|endoftext|>'])
punish_indices = list(set(punish_indices))
wo_batch = prompt_embeds[punish_indices]
wo_batch = punish_wight(wo_batch.T.to(float), wo_batch.size(0), alpha=alpha, beta=beta, calc_similarity=False).T.to(prompt_embeds.dtype)
prompt_embeds[punish_indices] = wo_batch
def find_sublist_index(list1, list2):
for i in range(len(list1) - len(list2) + 1):
if list1[i:i + len(list2)] == list2:
return i
return -1 # If sublist is not found
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).
This version of the method comes from here:
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
"""
x = x_in
B, C, H, W = x.shape
x = x.to(dtype=torch.float32)
# FFT
x_freq = fftn(x, dim=(-2, -1))
x_freq = fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W), device=x.device)
crow, ccol = H // 2, W // 2
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
x_freq = x_freq * mask
# IFFT
x_freq = ifftshift(x_freq, dim=(-2, -1))
x_filtered = ifftn(x_freq, dim=(-2, -1)).real
return x_filtered.to(dtype=x_in.dtype)
def apply_freeu(
resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs
) -> Tuple["torch.Tensor", "torch.Tensor"]:
"""Applies the FreeU mechanism as introduced in https:
//arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.
Args:
resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
hidden_states (`torch.Tensor`): Inputs to the underlying block.
res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if resolution_idx == 0:
num_half_channels = hidden_states.shape[1] // 2
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
if resolution_idx == 1:
num_half_channels = hidden_states.shape[1] // 2
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])
return hidden_states, res_hidden_states
def circular_sliding_windows(lst, w):
n = len(lst)
windows = []
for i in range(n):
window = [lst[(i + j) % n] for j in range(w)]
windows.append(window)
return windows |