File size: 21,107 Bytes
31c1396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import torch
from typing import Optional
from PIL import Image
from diffusers import AutoencoderKL, EulerDiscreteScheduler, EDMDPMSolverMultistepScheduler
from transformers import (
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
)
from scipy.spatial.distance import cdist
import numpy as np
import unet.pipeline_stable_diffusion_xl as pipeline_stable_diffusion_xl
from torch.fft import fftn, fftshift, ifftn, ifftshift
from typing import Optional, Tuple

from unet.unet import UNet2DConditionModel
from unet.unet_controller import UNetController


def ipca(q, k, v, scale, unet_controller: Optional[UNetController] = None): # eg. q: [4,20,1024,64] k,v: [4,20,77,64] 
    q_neg, q_pos = torch.split(q, q.size(0) // 2, dim=0)
    k_neg, k_pos = torch.split(k, k.size(0) // 2, dim=0)
    v_neg, v_pos = torch.split(v, v.size(0) // 2, dim=0)

    # 1. negative_attn

    scores_neg = torch.matmul(q_neg, k_neg.transpose(-2, -1)) * scale
    attn_weights_neg = torch.softmax(scores_neg, dim=-1)
    attn_output_neg = torch.matmul(attn_weights_neg, v_neg)

    # 2. positive_attn (we do ipca only on positive branch)

    # 2.1 ipca 
    k_plus = torch.cat(tuple(k_pos.transpose(-2, -1)), dim=2).unsqueeze(0).repeat(k_pos.size(0),1,1,1) # 𝐾+ = [𝐾1 βŠ• 𝐾2 βŠ• . . . βŠ• 𝐾𝑁 ]
    v_plus = torch.cat(tuple(v_pos), dim=1).unsqueeze(0).repeat(v_pos.size(0),1,1,1) # 𝑉+ = [𝑉1 βŠ• 𝑉2 βŠ• . . . βŠ• 𝑉𝑁 ]


    # 2.2 apply mask
    if unet_controller is not None:
        scores_pos = torch.matmul(q_pos, k_plus) * scale

        
        # 2.2.1 apply dropout mask
        dropout_mask = gen_dropout_mask(scores_pos.shape, unet_controller, unet_controller.Ipca_dropout) # eg: [a,1024,154]   


        # 2.2.3 apply embeds mask
        if unet_controller.Use_embeds_mask:
            apply_embeds_mask(unet_controller,dropout_mask, add_eot=False)

        mask = dropout_mask

        mask = mask.unsqueeze(1).repeat(1,scores_pos.size(1),1,1)
        attn_weights_pos = torch.softmax(scores_pos + torch.log(mask), dim=-1)

    else:
        scores_pos = torch.matmul(q_pos, k_plus) * scale
        attn_weights_pos = torch.softmax(scores_pos, dim=-1)


    attn_output_pos = torch.matmul(attn_weights_pos, v_plus)
    # 3. combine
    attn_output = torch.cat((attn_output_neg, attn_output_pos), dim=0)

    return attn_output


def ipca2(q, k, v, scale, unet_controller: Optional[UNetController] = None): # eg. q: [4,20,1024,64] k,v: [4,20,77,64] 
    if unet_controller.ipca_time_step != unet_controller.current_time_step:
        unet_controller.ipca_time_step = unet_controller.current_time_step
        unet_controller.ipca2_index = 0
    else:
        unet_controller.ipca2_index += 1

    if unet_controller.Store_qkv is True:

        key = f"cross {unet_controller.current_time_step} {unet_controller.current_unet_position} {unet_controller.ipca2_index}"
        unet_controller.k_store[key] = k
        unet_controller.v_store[key] = v

        scores = torch.matmul(q, k.transpose(-2, -1)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        attn_output = torch.matmul(attn_weights, v)
    else:
        # batch > 1
        if unet_controller.frame_prompt_express_list is not None:
            batch_size = q.size(0) // 2
            attn_output_list = []

            for i in range(batch_size):
                q_i = q[[i, i + batch_size], :, :, :]
                k_i = k[[i, i + batch_size], :, :, :]
                v_i = v[[i, i + batch_size], :, :, :]

                q_neg_i, q_pos_i = torch.split(q_i, q_i.size(0) // 2, dim=0)
                k_neg_i, k_pos_i = torch.split(k_i, k_i.size(0) // 2, dim=0)
                v_neg_i, v_pos_i = torch.split(v_i, v_i.size(0) // 2, dim=0)

                key = f"cross {unet_controller.current_time_step} {unet_controller.current_unet_position} {unet_controller.ipca2_index}"
                q_store = q_i
                k_store = unet_controller.k_store[key]
                v_store = unet_controller.v_store[key]

                q_store_neg, q_store_pos = torch.split(q_store, q_store.size(0) // 2, dim=0)
                k_store_neg, k_store_pos = torch.split(k_store, k_store.size(0) // 2, dim=0)
                v_store_neg, v_store_pos = torch.split(v_store, v_store.size(0) // 2, dim=0)    

                q_neg = torch.cat((q_neg_i, q_store_neg), dim=0)
                q_pos = torch.cat((q_pos_i, q_store_pos), dim=0)
                k_neg = torch.cat((k_neg_i, k_store_neg), dim=0)
                k_pos = torch.cat((k_pos_i, k_store_pos), dim=0)
                v_neg = torch.cat((v_neg_i, v_store_neg), dim=0)
                v_pos = torch.cat((v_pos_i, v_store_pos), dim=0)

                q_i = torch.cat((q_neg, q_pos), dim=0)
                k_i = torch.cat((k_neg, k_pos), dim=0)
                v_i = torch.cat((v_neg, v_pos), dim=0)

                attn_output_i = ipca(q_i, k_i, v_i, scale, unet_controller)
                attn_output_i = attn_output_i[[0, 2], :, :, :]
                attn_output_list.append(attn_output_i)
            
            attn_output_ = torch.cat(attn_output_list, dim=0)
            attn_output = torch.zeros(size=(q.size(0), attn_output_i.size(1), attn_output_i.size(2), attn_output_i.size(3)), device=q.device, dtype=q.dtype)
            for i in range(batch_size):
                attn_output[i] = attn_output_[i*2]
            for i in range(batch_size):
                attn_output[i + batch_size] = attn_output_[i*2 + 1]
        # batch = 1
        else:
            q_neg, q_pos = torch.split(q, q.size(0) // 2, dim=0)
            k_neg, k_pos = torch.split(k, k.size(0) // 2, dim=0)
            v_neg, v_pos = torch.split(v, v.size(0) // 2, dim=0)

            key = f"cross {unet_controller.current_time_step} {unet_controller.current_unet_position} {unet_controller.ipca2_index}"
            q_store = q
            k_store = unet_controller.k_store[key]
            v_store = unet_controller.v_store[key]

            q_store_neg, q_store_pos = torch.split(q_store, q_store.size(0) // 2, dim=0)
            k_store_neg, k_store_pos = torch.split(k_store, k_store.size(0) // 2, dim=0)
            v_store_neg, v_store_pos = torch.split(v_store, v_store.size(0) // 2, dim=0)    

            q_neg = torch.cat((q_neg, q_store_neg), dim=0)
            q_pos = torch.cat((q_pos, q_store_pos), dim=0)
            k_neg = torch.cat((k_neg, k_store_neg), dim=0)
            k_pos = torch.cat((k_pos, k_store_pos), dim=0)
            v_neg = torch.cat((v_neg, v_store_neg), dim=0)
            v_pos = torch.cat((v_pos, v_store_pos), dim=0)

            q = torch.cat((q_neg, q_pos), dim=0)
            k = torch.cat((k_neg, k_pos), dim=0)
            v = torch.cat((v_neg, v_pos), dim=0)

            attn_output = ipca(q, k, v, scale, unet_controller)
            attn_output = attn_output[[0, 2], :, :, :]
    
    return attn_output


def apply_embeds_mask(unet_controller: Optional[UNetController],dropout_mask, add_eot=False):   
    id_prompt = unet_controller.id_prompt
    prompt_tokens = prompt2tokens(unet_controller.tokenizer,unet_controller.prompts[0])
    
    words_tokens = prompt2tokens(unet_controller.tokenizer,id_prompt)
    words_tokens = [word for word in words_tokens if word != '<|endoftext|>' and word != '<|startoftext|>']
    index_of_words = find_sublist_index(prompt_tokens,words_tokens)    
    index_list = [index+77 for index in range(index_of_words, index_of_words+len(words_tokens))]
    if add_eot:
        index_list.extend([index+77 for index, word in enumerate(prompt_tokens) if word == '<|endoftext|>'])

    mask_indices = torch.arange(dropout_mask.size(-1), device=dropout_mask.device)
    mask = (mask_indices >= 78) & (~torch.isin(mask_indices, torch.tensor(index_list, device=dropout_mask.device)))
    dropout_mask[0, :, mask] = 0


def gen_dropout_mask(out_shape, unet_controller: Optional[UNetController], drop_out):
    gen_length = out_shape[3]
    attn_map_side_length = out_shape[2]

    batch_num = out_shape[0]
    mask_list = []
    
    for prompt_index in range(batch_num):
        start = prompt_index * int(gen_length / batch_num)
        end = (prompt_index + 1) * int(gen_length / batch_num)
    
        mask = torch.bernoulli(torch.full((attn_map_side_length,gen_length), 1 - drop_out, dtype=unet_controller.torch_dtype, device=unet_controller.device))        
        mask[:, start:end] = 1

        mask_list.append(mask)

    concatenated_mask = torch.stack(mask_list, dim=0)
    return concatenated_mask


def load_pipe_from_path(model_path, device, torch_dtype, variant):
    model_name = model_path.split('/')[-1]
    if model_path.split('/')[-1] == 'playground-v2.5-1024px-aesthetic':
        scheduler = EDMDPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=torch_dtype, variant=variant,)
    else:
        scheduler = EulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=torch_dtype, variant=variant,)
    
    if model_path.split('/')[-1] == 'Juggernaut-X-v10' or model_path.split('/')[-1] == 'Juggernaut-XI-v11':
        variant = None

    vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae", torch_dtype=torch_dtype, variant=variant,)
    tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=torch_dtype, variant=variant,)
    tokenizer_2 = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer_2", torch_dtype=torch_dtype, variant=variant,)
    text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=torch_dtype, variant=variant,)
    text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder_2", torch_dtype=torch_dtype, variant=variant,)
    unet_new = UNet2DConditionModel.from_pretrained(model_path, subfolder="unet", torch_dtype=torch_dtype, variant=variant,)
    
    pipe = pipeline_stable_diffusion_xl.StableDiffusionXLPipeline(
        vae=vae,
        text_encoder=text_encoder,
        text_encoder_2=text_encoder_2,
        tokenizer=tokenizer,
        tokenizer_2=tokenizer_2,
        unet=unet_new,
        scheduler=scheduler,
    )
    pipe.to(device)

    return pipe, model_name


def get_max_window_length(unet_controller: Optional[UNetController],id_prompt, frame_prompt_list):
    single_long_prompt = id_prompt
    max_window_length = 0
    for index, movement in enumerate(frame_prompt_list):
        single_long_prompt += ' ' + movement
        token_length = len(single_long_prompt.split())
        if token_length >= 77:
            break
        max_window_length += 1
    return max_window_length


def movement_gen_story_slide_windows(id_prompt, frame_prompt_list, pipe, window_length, seed, unet_controller: Optional[UNetController], save_dir, verbose=True):  
    import os
    max_window_length = get_max_window_length(unet_controller,id_prompt,frame_prompt_list)
    window_length = min(window_length,max_window_length)
    if window_length < len(frame_prompt_list):
        movement_lists = circular_sliding_windows(frame_prompt_list, window_length)
    else:
        movement_lists = [movement for movement in frame_prompt_list]
    story_images = []


    if verbose: 
        print("seed:", seed)
    generate = torch.Generator().manual_seed(seed)
    unet_controller.id_prompt = id_prompt

    for index, movement in enumerate(frame_prompt_list):
        if unet_controller is not None:
            if window_length < len(frame_prompt_list):
                unet_controller.frame_prompt_suppress = movement_lists[index][1:]
                unet_controller.frame_prompt_express = movement_lists[index][0]
                gen_propmts = [f'{id_prompt} {" ".join(movement_lists[index])}']

            else:
                unet_controller.frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
                unet_controller.frame_prompt_express = movement_lists[index]
                gen_propmts = [f'{id_prompt} {" ".join(movement_lists)}']
            
            if verbose:
                print(f"suppress: {unet_controller.frame_prompt_suppress}")
                print(f"express: {unet_controller.frame_prompt_express}")
                print(f'id_prompt: {id_prompt}')
                print(f"gen_propmts: {gen_propmts}")


        else:
            gen_propmts = f'{id_prompt} {movement}'

        if unet_controller is not None and unet_controller.Use_same_init_noise is True:     
            generate = torch.Generator().manual_seed(seed)

        images = pipe(gen_propmts, generator=generate, unet_controller=unet_controller).images
        story_images.append(images[0])
        images[0].save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express}.jpg'))


    image_array_list = [np.array(pil_img) for pil_img in story_images]

    # Concatenate images horizontally
    story_image = np.concatenate(image_array_list, axis=1)
    story_image = Image.fromarray(story_image.astype(np.uint8))

    if unet_controller.Save_story_image:
        story_image.save(os.path.join(save_dir, f'story_image_{id_prompt}.jpg'))

    return story_images, story_image

# this function set batch > 1 to generate multiple images at once
def movement_gen_story_slide_windows_batch(id_prompt, frame_prompt_list, pipe, window_length, seed, unet_controller: Optional[UNetController], save_dir, batch_size=3):  
    import os
    max_window_length = get_max_window_length(unet_controller,id_prompt,frame_prompt_list)
    window_length = min(window_length,max_window_length)
    if window_length < len(frame_prompt_list):
        movement_lists = circular_sliding_windows(frame_prompt_list, window_length)
    else:
        movement_lists = [movement for movement in frame_prompt_list]
    story_images = []

    print("seed:", seed)
    generate = torch.Generator().manual_seed(seed)
    unet_controller.id_prompt = id_prompt

    gen_prompt_info_list = []
    gen_prompt = None
    for index, _ in enumerate(frame_prompt_list):
        if window_length < len(frame_prompt_list):
            frame_prompt_suppress = movement_lists[index][1:]
            frame_prompt_express = movement_lists[index][0]
            gen_prompt = f'{id_prompt} {" ".join(movement_lists[index])}'

        else:
            frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
            frame_prompt_express = movement_lists[index]
            gen_prompt = f'{id_prompt} {" ".join(movement_lists)}'

        gen_prompt_info_list.append({'frame_prompt_suppress': frame_prompt_suppress, 'frame_prompt_express': frame_prompt_express})
    
    story_images = []
    for i in range(0, len(gen_prompt_info_list), batch_size):
        batch = gen_prompt_info_list[i:i + batch_size]
        gen_prompts = [gen_prompt for _ in batch]
        unet_controller.frame_prompt_express_list = [gen_prompt_info['frame_prompt_express'] for gen_prompt_info in batch]
        unet_controller.frame_prompt_suppress_list = [gen_prompt_info['frame_prompt_suppress'] for gen_prompt_info in batch]
                
        if unet_controller is not None and unet_controller.Use_same_init_noise is True:     
            generate = torch.Generator().manual_seed(seed)
        
        images = pipe(gen_prompts, generator=generate, unet_controller=unet_controller).images    
        for index,image in enumerate(images):
            story_images.append(image)
            image.save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express_list[index]}.jpg'))

    image_array_list = [np.array(pil_img) for pil_img in story_images]

    # Concatenate images horizontally
    story_image = np.concatenate(image_array_list, axis=1)
    story_image = Image.fromarray(story_image.astype(np.uint8))

    if unet_controller.Save_story_image:
        story_image.save(os.path.join(save_dir, 'story_image.jpg'))

    return story_images, story_image


def prompt2tokens(tokenizer, prompt):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    tokens = []
    for text_input_id in text_input_ids[0]:
        token = tokenizer.decoder[text_input_id.item()]
        tokens.append(token)
    return tokens


def punish_wight(tensor, latent_size, alpha=1.0, beta=1.2, calc_similarity=False):
    u, s, vh = torch.linalg.svd(tensor)
    u = u[:,:latent_size]
    zero_idx = int(latent_size * alpha)

    if calc_similarity:
        _s = s.clone()
        _s *= torch.exp(-alpha*_s) * beta
        _s[zero_idx:] = 0
        _tensor = u @ torch.diag(_s) @ vh
        dist = cdist(tensor[:,0].unsqueeze(0).cpu(), _tensor[:,0].unsqueeze(0).cpu(), metric='cosine')
        print(f'The distance between the word embedding before and after the punishment: {dist}')
    s *= torch.exp(-alpha*s) * beta
    tensor = u @ torch.diag(s) @ vh
    return tensor


def swr_single_prompt_embeds(swr_words,prompt_embeds,prompt,tokenizer,alpha=1.0, beta=1.2, zero_eot=False):
    punish_indices = []

    prompt_tokens = prompt2tokens(tokenizer,prompt)
    
    words_tokens = prompt2tokens(tokenizer,swr_words)
    words_tokens = [word for word in words_tokens if word != '<|endoftext|>' and word != '<|startoftext|>']
    index_of_words = find_sublist_index(prompt_tokens,words_tokens)
    
    if index_of_words != -1:
        punish_indices.extend([num for num in range(index_of_words, index_of_words+len(words_tokens))])
    
    if zero_eot:
        eot_indices = [index for index, word in enumerate(prompt_tokens) if word == '<|endoftext|>']
        prompt_embeds[eot_indices] *= 9e-1
        pass
    else:
        punish_indices.extend([index for index, word in enumerate(prompt_tokens) if word == '<|endoftext|>'])

    punish_indices = list(set(punish_indices))
    
    wo_batch = prompt_embeds[punish_indices]
    wo_batch = punish_wight(wo_batch.T.to(float), wo_batch.size(0), alpha=alpha, beta=beta, calc_similarity=False).T.to(prompt_embeds.dtype)

    prompt_embeds[punish_indices] = wo_batch


def find_sublist_index(list1, list2):
    for i in range(len(list1) - len(list2) + 1):
        if list1[i:i + len(list2)] == list2:
            return i
    return -1  # If sublist is not found


def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
    """Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).

    This version of the method comes from here:
    https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
    """
    x = x_in
    B, C, H, W = x.shape

    x = x.to(dtype=torch.float32)

    # FFT
    x_freq = fftn(x, dim=(-2, -1))
    x_freq = fftshift(x_freq, dim=(-2, -1))

    B, C, H, W = x_freq.shape
    mask = torch.ones((B, C, H, W), device=x.device)

    crow, ccol = H // 2, W // 2
    mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
    x_freq = x_freq * mask

    # IFFT
    x_freq = ifftshift(x_freq, dim=(-2, -1))
    x_filtered = ifftn(x_freq, dim=(-2, -1)).real

    return x_filtered.to(dtype=x_in.dtype)


def apply_freeu(
    resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs
) -> Tuple["torch.Tensor", "torch.Tensor"]:
    """Applies the FreeU mechanism as introduced in https:
    //arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.

    Args:
        resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
        hidden_states (`torch.Tensor`): Inputs to the underlying block.
        res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
        s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
        s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
    """
    if resolution_idx == 0:
        num_half_channels = hidden_states.shape[1] // 2
        hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
        res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
    if resolution_idx == 1:
        num_half_channels = hidden_states.shape[1] // 2
        hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
        res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])

    return hidden_states, res_hidden_states


def circular_sliding_windows(lst, w):
    n = len(lst)
    windows = []
    for i in range(n):
        window = [lst[(i + j) % n] for j in range(w)]
        windows.append(window)
    return windows