Spaces:
Running
on
Zero
Running
on
Zero
init commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- README copy.md +17 -0
- app.py +242 -0
- assets/gradio_examples/1subject/config.json +6 -0
- assets/gradio_examples/1subject/ref.jpg +3 -0
- assets/gradio_examples/2identity/config.json +6 -0
- assets/gradio_examples/2identity/ref.webp +3 -0
- assets/gradio_examples/3identity/config.json +6 -0
- assets/gradio_examples/3identity/ref.jpg +3 -0
- assets/gradio_examples/4identity/config.json +6 -0
- assets/gradio_examples/4identity/ref.webp +3 -0
- assets/gradio_examples/5style/config.json +6 -0
- assets/gradio_examples/5style/ref.webp +3 -0
- assets/gradio_examples/6style/config.json +6 -0
- assets/gradio_examples/6style/ref.webp +3 -0
- assets/gradio_examples/7style_subject/config.json +7 -0
- assets/gradio_examples/7style_subject/ref1.webp +3 -0
- assets/gradio_examples/7style_subject/ref2.webp +3 -0
- assets/gradio_examples/8style_subject/config.json +7 -0
- assets/gradio_examples/8style_subject/ref1.webp +3 -0
- assets/gradio_examples/8style_subject/ref2.webp +3 -0
- assets/gradio_examples/9mix_style/config.json +7 -0
- assets/gradio_examples/9mix_style/ref1.webp +3 -0
- assets/gradio_examples/9mix_style/ref2.webp +3 -0
- assets/gradio_examples/identity1.jpg +3 -0
- assets/gradio_examples/identity1_result.png +3 -0
- assets/gradio_examples/identity2.webp +3 -0
- assets/gradio_examples/identity2_style2_result.webp +3 -0
- assets/gradio_examples/style1.webp +3 -0
- assets/gradio_examples/style1_result.webp +3 -0
- assets/gradio_examples/style2.webp +3 -0
- assets/gradio_examples/style3.webp +3 -0
- assets/gradio_examples/style3_style4_result.webp +3 -0
- assets/gradio_examples/style4.webp +3 -0
- assets/gradio_examples/z_mix_style/config.json +7 -0
- assets/gradio_examples/z_mix_style/ref1.png +3 -0
- assets/gradio_examples/z_mix_style/ref2.png +3 -0
- assets/gradio_examples/zz_t2i/config.json +5 -0
- assets/teaser.webp +3 -0
- assets/uso.webp +3 -0
- assets/uso_logo.svg +0 -0
- assets/uso_text.svg +0 -0
- requirements.txt +19 -0
- uso/flux/math.py +45 -0
- uso/flux/model.py +258 -0
- uso/flux/modules/__pycache__/autoencoder.cpython-311.pyc +0 -0
- uso/flux/modules/__pycache__/conditioner.cpython-311.pyc +0 -0
- uso/flux/modules/__pycache__/layers.cpython-311.pyc +0 -0
- uso/flux/modules/autoencoder.py +327 -0
- uso/flux/modules/conditioner.py +53 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
README copy.md
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: USO
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.23.3
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: Freely Combining Any Subjects with Any Styles Across All Scenarios.
|
12 |
+
models:
|
13 |
+
- black-forest-labs/FLUX.1-dev
|
14 |
+
- bytedance-research/UNO
|
15 |
+
---
|
16 |
+
|
17 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import dataclasses
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from pathlib import Path
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
import torch
|
22 |
+
import spaces
|
23 |
+
|
24 |
+
from uso.flux.pipeline import USOPipeline
|
25 |
+
from transformers import SiglipVisionModel, SiglipImageProcessor
|
26 |
+
|
27 |
+
|
28 |
+
with open("assets/uso_text.svg", "r", encoding="utf-8") as svg_file:
|
29 |
+
text_content = svg_file.read()
|
30 |
+
|
31 |
+
with open("assets/uso_logo.svg", "r", encoding="utf-8") as svg_file:
|
32 |
+
logo_content = svg_file.read()
|
33 |
+
|
34 |
+
title = f"""
|
35 |
+
<div style="display: flex; align-items: center; justify-content: center;">
|
36 |
+
<span style="transform: scale(0.7);margin-right: -5px;">{text_content}</span>
|
37 |
+
<span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">by UXO Team</span>
|
38 |
+
<span style="margin-left: 0px; transform: scale(0.85); display: inline-block;">{logo_content}</span>
|
39 |
+
</div>
|
40 |
+
""".strip()
|
41 |
+
|
42 |
+
badges_text = r"""
|
43 |
+
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;">
|
44 |
+
<a href="https://github.com/bytedance/USO"><img src="https://img.shields.io/static/v1?label=GitHub&message=Code&color=green&logo=github"></a>
|
45 |
+
<a href="https://bytedance.github.io/USO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-USO-yellow"></a>
|
46 |
+
<a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-USO-b31b1b.svg"></a>
|
47 |
+
<a href="https://huggingface.co/bytedance-research/USO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a>
|
48 |
+
</div>
|
49 |
+
""".strip()
|
50 |
+
|
51 |
+
tips = """
|
52 |
+
📌 **What is USO?**
|
53 |
+
USO is a unified style-subject optimized customization model and the latest addition to the UXO family (<a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>).
|
54 |
+
It can freely combine arbitrary subjects with arbitrary styles in any scenarios.
|
55 |
+
|
56 |
+
💡 **How to use?**
|
57 |
+
We provide step-by-step instructions in our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>.
|
58 |
+
Additionally, try the examples provided below the demo to quickly get familiar with USO and spark your creativity!
|
59 |
+
|
60 |
+
⚡️ The model is trained on 1024x1024 resolution and supports 3 types of usage:
|
61 |
+
* **Only content img**: support following types:
|
62 |
+
* Subject/Identity-driven (supports natural prompt, e.g., *A clock on the table.* *The woman near the sea.*, excels in producing **photorealistic portraits**)
|
63 |
+
* Style edit (layout-preserved): *Transform the image into Ghibli style/Pixel style/Retro comic style/Watercolor painting style...*.
|
64 |
+
* Style edit (layout-shift): *Ghibli style, the man on the beach.*.
|
65 |
+
* **Only style img**: Reference input style and generate anything following prompt. Excelling in this and further support multiple style references (in beta).
|
66 |
+
* **Content img + style img**: Place the content into the desired style.
|
67 |
+
* Layout-preserved: set prompt to **empty**.
|
68 |
+
* Layout-shift: using natural prompt."""
|
69 |
+
|
70 |
+
star = r"""
|
71 |
+
If USO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>. Thanks a lot!"""
|
72 |
+
|
73 |
+
def get_examples(examples_dir: str = "assets/examples") -> list:
|
74 |
+
examples = Path(examples_dir)
|
75 |
+
ans = []
|
76 |
+
for example in examples.iterdir():
|
77 |
+
if not example.is_dir() or len(os.listdir(example)) == 0:
|
78 |
+
continue
|
79 |
+
with open(example / "config.json") as f:
|
80 |
+
example_dict = json.load(f)
|
81 |
+
|
82 |
+
|
83 |
+
example_list = []
|
84 |
+
|
85 |
+
example_list.append(example_dict["usage"]) # case for
|
86 |
+
example_list.append(example_dict["prompt"]) # prompt
|
87 |
+
|
88 |
+
for key in ["image_ref1", "image_ref2", "image_ref3"]:
|
89 |
+
if key in example_dict:
|
90 |
+
example_list.append(str(example / example_dict[key]))
|
91 |
+
else:
|
92 |
+
example_list.append(None)
|
93 |
+
|
94 |
+
example_list.append(example_dict["seed"])
|
95 |
+
ans.append(example_list)
|
96 |
+
return ans
|
97 |
+
|
98 |
+
|
99 |
+
def create_demo(
|
100 |
+
model_type: str,
|
101 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
102 |
+
offload: bool = False,
|
103 |
+
):
|
104 |
+
pipeline = USOPipeline(
|
105 |
+
model_type, device, offload, only_lora=True, lora_rank=128, hf_download=True
|
106 |
+
)
|
107 |
+
print("USOPipeline loaded successfully")
|
108 |
+
|
109 |
+
siglip_processor = SiglipImageProcessor.from_pretrained(
|
110 |
+
"google/siglip-so400m-patch14-384"
|
111 |
+
)
|
112 |
+
siglip_model = SiglipVisionModel.from_pretrained(
|
113 |
+
"google/siglip-so400m-patch14-384"
|
114 |
+
)
|
115 |
+
siglip_model.eval()
|
116 |
+
siglip_model.to(device)
|
117 |
+
pipeline.model.vision_encoder = siglip_model
|
118 |
+
pipeline.model.vision_encoder_processor = siglip_processor
|
119 |
+
print("SigLIP model loaded successfully")
|
120 |
+
|
121 |
+
pipeline.gradio_generate = spaces.GPU(duration=120)(pipeline.gradio_generate)
|
122 |
+
with gr.Blocks() as demo:
|
123 |
+
gr.Markdown(title)
|
124 |
+
gr.Markdown(badges_text)
|
125 |
+
gr.Markdown(tips)
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column():
|
128 |
+
prompt = gr.Textbox(label="Prompt", value="A beautiful woman.")
|
129 |
+
with gr.Row():
|
130 |
+
image_prompt1 = gr.Image(
|
131 |
+
label="Content Reference Img", visible=True, interactive=True, type="pil"
|
132 |
+
)
|
133 |
+
image_prompt2 = gr.Image(
|
134 |
+
label="Style Reference Img", visible=True, interactive=True, type="pil"
|
135 |
+
)
|
136 |
+
image_prompt3 = gr.Image(
|
137 |
+
label="Extra Style Reference Img (Beta)", visible=True, interactive=True, type="pil"
|
138 |
+
)
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
with gr.Row():
|
142 |
+
width = gr.Slider(
|
143 |
+
512, 1536, 1024, step=16, label="Generation Width"
|
144 |
+
)
|
145 |
+
height = gr.Slider(
|
146 |
+
512, 1536, 1024, step=16, label="Generation Height"
|
147 |
+
)
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Row():
|
150 |
+
keep_size = gr.Checkbox(
|
151 |
+
label="Keep input size",
|
152 |
+
value=False,
|
153 |
+
interactive=True
|
154 |
+
)
|
155 |
+
with gr.Column():
|
156 |
+
gr.Markdown("Set it to True if you only need style editing or want to keep the layout.")
|
157 |
+
|
158 |
+
with gr.Accordion("Advanced Options", open=True):
|
159 |
+
with gr.Row():
|
160 |
+
num_steps = gr.Slider(
|
161 |
+
1, 50, 25, step=1, label="Number of steps"
|
162 |
+
)
|
163 |
+
guidance = gr.Slider(
|
164 |
+
1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True
|
165 |
+
)
|
166 |
+
content_long_size = gr.Slider(
|
167 |
+
0, 1024, 512, step=16, label="Content reference size"
|
168 |
+
)
|
169 |
+
seed = gr.Number(-1, label="Seed (-1 for random)")
|
170 |
+
|
171 |
+
generate_btn = gr.Button("Generate")
|
172 |
+
gr.Markdown(star)
|
173 |
+
|
174 |
+
with gr.Column():
|
175 |
+
output_image = gr.Image(label="Generated Image")
|
176 |
+
download_btn = gr.File(
|
177 |
+
label="Download full-resolution", type="filepath", interactive=False
|
178 |
+
)
|
179 |
+
|
180 |
+
inputs = [
|
181 |
+
prompt,
|
182 |
+
image_prompt1,
|
183 |
+
image_prompt2,
|
184 |
+
image_prompt3,
|
185 |
+
seed,
|
186 |
+
width,
|
187 |
+
height,
|
188 |
+
guidance,
|
189 |
+
num_steps,
|
190 |
+
keep_size,
|
191 |
+
content_long_size,
|
192 |
+
]
|
193 |
+
generate_btn.click(
|
194 |
+
fn=pipeline.gradio_generate,
|
195 |
+
inputs=inputs,
|
196 |
+
outputs=[output_image, download_btn],
|
197 |
+
)
|
198 |
+
|
199 |
+
example_text = gr.Text("", visible=False, label="Case For:")
|
200 |
+
examples = get_examples("./assets/gradio_examples")
|
201 |
+
|
202 |
+
gr.Examples(
|
203 |
+
examples=examples,
|
204 |
+
inputs=[
|
205 |
+
example_text,
|
206 |
+
prompt,
|
207 |
+
image_prompt1,
|
208 |
+
image_prompt2,
|
209 |
+
image_prompt3,
|
210 |
+
seed,
|
211 |
+
],
|
212 |
+
# cache_examples='lazy',
|
213 |
+
outputs=[output_image, download_btn],
|
214 |
+
fn=pipeline.gradio_generate,
|
215 |
+
)
|
216 |
+
|
217 |
+
return demo
|
218 |
+
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
from typing import Literal
|
222 |
+
|
223 |
+
from transformers import HfArgumentParser
|
224 |
+
|
225 |
+
@dataclasses.dataclass
|
226 |
+
class AppArgs:
|
227 |
+
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell", "flux-krea-dev"] = "flux-dev"
|
228 |
+
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
|
229 |
+
offload: bool = dataclasses.field(
|
230 |
+
default=False,
|
231 |
+
metadata={
|
232 |
+
"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."
|
233 |
+
},
|
234 |
+
)
|
235 |
+
port: int = 7860
|
236 |
+
|
237 |
+
parser = HfArgumentParser([AppArgs])
|
238 |
+
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
|
239 |
+
args = args_tuple[0]
|
240 |
+
|
241 |
+
demo = create_demo(args.name, args.device, args.offload)
|
242 |
+
demo.launch(server_port=args.port)
|
assets/gradio_examples/1subject/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "Wool felt style, a clock in the jungle.",
|
3 |
+
"seed": 3407,
|
4 |
+
"usage": "Subject-driven",
|
5 |
+
"image_ref1": "./ref.jpg"
|
6 |
+
}
|
assets/gradio_examples/1subject/ref.jpg
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/2identity/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "The girl is riding a bike in a street.",
|
3 |
+
"seed": 3407,
|
4 |
+
"usage": "Identity-driven",
|
5 |
+
"image_ref1": "./ref.webp"
|
6 |
+
}
|
assets/gradio_examples/2identity/ref.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/3identity/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "The man in flower shops carefully match bouquets, conveying beautiful emotions and blessings with flowers.",
|
3 |
+
"seed": 3407,
|
4 |
+
"usage": "Identity-driven",
|
5 |
+
"image_ref1": "./ref.jpg"
|
6 |
+
}
|
assets/gradio_examples/3identity/ref.jpg
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/4identity/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "Transform the image into Ghibli style.",
|
3 |
+
"seed": 3407,
|
4 |
+
"usage": "Identity-driven",
|
5 |
+
"image_ref1": "./ref.webp"
|
6 |
+
}
|
assets/gradio_examples/4identity/ref.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/5style/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "A cat sleeping on a chair.",
|
3 |
+
"seed": 3407,
|
4 |
+
"usage": "Style-driven",
|
5 |
+
"image_ref2": "./ref.webp"
|
6 |
+
}
|
assets/gradio_examples/5style/ref.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/6style/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "A beautiful woman.",
|
3 |
+
"seed": 3407,
|
4 |
+
"usage": "Style-driven",
|
5 |
+
"image_ref2": "./ref.webp"
|
6 |
+
}
|
assets/gradio_examples/6style/ref.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/7style_subject/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "",
|
3 |
+
"seed": 321,
|
4 |
+
"usage": "Style-subject-driven (layout-preserved)",
|
5 |
+
"image_ref1": "./ref1.webp",
|
6 |
+
"image_ref2": "./ref2.webp"
|
7 |
+
}
|
assets/gradio_examples/7style_subject/ref1.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/7style_subject/ref2.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/8style_subject/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "The woman gave an impassioned speech on the podium.",
|
3 |
+
"seed": 321,
|
4 |
+
"usage": "Style-subject-driven (layout-shifted)",
|
5 |
+
"image_ref1": "./ref1.webp",
|
6 |
+
"image_ref2": "./ref2.webp"
|
7 |
+
}
|
assets/gradio_examples/8style_subject/ref1.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/8style_subject/ref2.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/9mix_style/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "A man.",
|
3 |
+
"seed": 321,
|
4 |
+
"usage": "Multi-style-driven",
|
5 |
+
"image_ref2": "./ref1.webp",
|
6 |
+
"image_ref3": "./ref2.webp"
|
7 |
+
}
|
assets/gradio_examples/9mix_style/ref1.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/9mix_style/ref2.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/identity1.jpg
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/identity1_result.png
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/identity2.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/identity2_style2_result.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/style1.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/style1_result.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/style2.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/style3.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/style3_style4_result.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/style4.webp
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/z_mix_style/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "Boat on water.",
|
3 |
+
"seed": 321,
|
4 |
+
"usage": "Multi-style-driven",
|
5 |
+
"image_ref2": "./ref1.png",
|
6 |
+
"image_ref3": "./ref2.png"
|
7 |
+
}
|
assets/gradio_examples/z_mix_style/ref1.png
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/z_mix_style/ref2.png
ADDED
![]() |
Git LFS Details
|
assets/gradio_examples/zz_t2i/config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompt": "A beautiful woman.",
|
3 |
+
"seed": -1,
|
4 |
+
"usage": "Text-to-image"
|
5 |
+
}
|
assets/teaser.webp
ADDED
![]() |
Git LFS Details
|
assets/uso.webp
ADDED
![]() |
Git LFS Details
|
assets/uso_logo.svg
ADDED
|
assets/uso_text.svg
ADDED
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.1.1
|
2 |
+
deepspeed==0.14.4
|
3 |
+
einops==0.8.0
|
4 |
+
transformers==4.43.3
|
5 |
+
huggingface-hub
|
6 |
+
diffusers==0.30.1
|
7 |
+
sentencepiece==0.2.0
|
8 |
+
gradio==5.22.0
|
9 |
+
opencv-python
|
10 |
+
matplotlib
|
11 |
+
safetensors==0.4.5
|
12 |
+
scipy==1.10.1
|
13 |
+
numpy==1.24.4
|
14 |
+
onnxruntime-gpu
|
15 |
+
# httpx==0.23.3
|
16 |
+
git+https://github.com/openai/CLIP.git
|
17 |
+
--extra-index-url https://download.pytorch.org/whl/cu124
|
18 |
+
torch==2.4.0
|
19 |
+
torchvision==0.19.0
|
uso/flux/math.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from einops import rearrange
|
18 |
+
from torch import Tensor
|
19 |
+
|
20 |
+
|
21 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
22 |
+
q, k = apply_rope(q, k, pe)
|
23 |
+
|
24 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
25 |
+
x = rearrange(x, "B H L D -> B L (H D)")
|
26 |
+
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
31 |
+
assert dim % 2 == 0
|
32 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
33 |
+
omega = 1.0 / (theta**scale)
|
34 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
35 |
+
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
36 |
+
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
37 |
+
return out.float()
|
38 |
+
|
39 |
+
|
40 |
+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
41 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
42 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
43 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
44 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
45 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
uso/flux/model.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from dataclasses import dataclass
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import Tensor, nn
|
20 |
+
|
21 |
+
from .modules.layers import (
|
22 |
+
DoubleStreamBlock,
|
23 |
+
EmbedND,
|
24 |
+
LastLayer,
|
25 |
+
MLPEmbedder,
|
26 |
+
SingleStreamBlock,
|
27 |
+
timestep_embedding,
|
28 |
+
SigLIPMultiFeatProjModel,
|
29 |
+
)
|
30 |
+
import os
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class FluxParams:
|
35 |
+
in_channels: int
|
36 |
+
vec_in_dim: int
|
37 |
+
context_in_dim: int
|
38 |
+
hidden_size: int
|
39 |
+
mlp_ratio: float
|
40 |
+
num_heads: int
|
41 |
+
depth: int
|
42 |
+
depth_single_blocks: int
|
43 |
+
axes_dim: list[int]
|
44 |
+
theta: int
|
45 |
+
qkv_bias: bool
|
46 |
+
guidance_embed: bool
|
47 |
+
|
48 |
+
|
49 |
+
class Flux(nn.Module):
|
50 |
+
"""
|
51 |
+
Transformer model for flow matching on sequences.
|
52 |
+
"""
|
53 |
+
|
54 |
+
_supports_gradient_checkpointing = True
|
55 |
+
|
56 |
+
def __init__(self, params: FluxParams):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.params = params
|
60 |
+
self.in_channels = params.in_channels
|
61 |
+
self.out_channels = self.in_channels
|
62 |
+
if params.hidden_size % params.num_heads != 0:
|
63 |
+
raise ValueError(
|
64 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
65 |
+
)
|
66 |
+
pe_dim = params.hidden_size // params.num_heads
|
67 |
+
if sum(params.axes_dim) != pe_dim:
|
68 |
+
raise ValueError(
|
69 |
+
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
|
70 |
+
)
|
71 |
+
self.hidden_size = params.hidden_size
|
72 |
+
self.num_heads = params.num_heads
|
73 |
+
self.pe_embedder = EmbedND(
|
74 |
+
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim
|
75 |
+
)
|
76 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
77 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
78 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
79 |
+
self.guidance_in = (
|
80 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
81 |
+
if params.guidance_embed
|
82 |
+
else nn.Identity()
|
83 |
+
)
|
84 |
+
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
85 |
+
|
86 |
+
self.double_blocks = nn.ModuleList(
|
87 |
+
[
|
88 |
+
DoubleStreamBlock(
|
89 |
+
self.hidden_size,
|
90 |
+
self.num_heads,
|
91 |
+
mlp_ratio=params.mlp_ratio,
|
92 |
+
qkv_bias=params.qkv_bias,
|
93 |
+
)
|
94 |
+
for _ in range(params.depth)
|
95 |
+
]
|
96 |
+
)
|
97 |
+
|
98 |
+
self.single_blocks = nn.ModuleList(
|
99 |
+
[
|
100 |
+
SingleStreamBlock(
|
101 |
+
self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio
|
102 |
+
)
|
103 |
+
for _ in range(params.depth_single_blocks)
|
104 |
+
]
|
105 |
+
)
|
106 |
+
|
107 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
108 |
+
self.gradient_checkpointing = False
|
109 |
+
|
110 |
+
# feature embedder for siglip multi-feat inputs
|
111 |
+
self.feature_embedder = SigLIPMultiFeatProjModel(
|
112 |
+
siglip_token_nums=729,
|
113 |
+
style_token_nums=64,
|
114 |
+
siglip_token_dims=1152,
|
115 |
+
hidden_size=self.hidden_size,
|
116 |
+
context_layer_norm=True,
|
117 |
+
)
|
118 |
+
print("use semantic encoder siglip multi-feat to encode style image")
|
119 |
+
|
120 |
+
self.vision_encoder = None
|
121 |
+
|
122 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
123 |
+
if hasattr(module, "gradient_checkpointing"):
|
124 |
+
module.gradient_checkpointing = value
|
125 |
+
|
126 |
+
@property
|
127 |
+
def attn_processors(self):
|
128 |
+
# set recursively
|
129 |
+
processors = {} # type: dict[str, nn.Module]
|
130 |
+
|
131 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
|
132 |
+
if hasattr(module, "set_processor"):
|
133 |
+
processors[f"{name}.processor"] = module.processor
|
134 |
+
|
135 |
+
for sub_name, child in module.named_children():
|
136 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
137 |
+
|
138 |
+
return processors
|
139 |
+
|
140 |
+
for name, module in self.named_children():
|
141 |
+
fn_recursive_add_processors(name, module, processors)
|
142 |
+
|
143 |
+
return processors
|
144 |
+
|
145 |
+
def set_attn_processor(self, processor):
|
146 |
+
r"""
|
147 |
+
Sets the attention processor to use to compute attention.
|
148 |
+
|
149 |
+
Parameters:
|
150 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
151 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
152 |
+
for **all** `Attention` layers.
|
153 |
+
|
154 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
155 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
156 |
+
|
157 |
+
"""
|
158 |
+
count = len(self.attn_processors.keys())
|
159 |
+
|
160 |
+
if isinstance(processor, dict) and len(processor) != count:
|
161 |
+
raise ValueError(
|
162 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
163 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
164 |
+
)
|
165 |
+
|
166 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
167 |
+
if hasattr(module, "set_processor"):
|
168 |
+
if not isinstance(processor, dict):
|
169 |
+
module.set_processor(processor)
|
170 |
+
else:
|
171 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
172 |
+
|
173 |
+
for sub_name, child in module.named_children():
|
174 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
175 |
+
|
176 |
+
for name, module in self.named_children():
|
177 |
+
fn_recursive_attn_processor(name, module, processor)
|
178 |
+
|
179 |
+
def forward(
|
180 |
+
self,
|
181 |
+
img: Tensor,
|
182 |
+
img_ids: Tensor,
|
183 |
+
txt: Tensor,
|
184 |
+
txt_ids: Tensor,
|
185 |
+
timesteps: Tensor,
|
186 |
+
y: Tensor,
|
187 |
+
guidance: Tensor | None = None,
|
188 |
+
ref_img: Tensor | None = None,
|
189 |
+
ref_img_ids: Tensor | None = None,
|
190 |
+
siglip_inputs: list[Tensor] | None = None,
|
191 |
+
) -> Tensor:
|
192 |
+
if img.ndim != 3 or txt.ndim != 3:
|
193 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
194 |
+
|
195 |
+
# running on sequences img
|
196 |
+
img = self.img_in(img)
|
197 |
+
vec = self.time_in(timestep_embedding(timesteps, 256))
|
198 |
+
if self.params.guidance_embed:
|
199 |
+
if guidance is None:
|
200 |
+
raise ValueError(
|
201 |
+
"Didn't get guidance strength for guidance distilled model."
|
202 |
+
)
|
203 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
204 |
+
vec = vec + self.vector_in(y)
|
205 |
+
txt = self.txt_in(txt)
|
206 |
+
if self.feature_embedder is not None and siglip_inputs is not None and len(siglip_inputs) > 0 and self.vision_encoder is not None:
|
207 |
+
# processing style feat into textural hidden space
|
208 |
+
siglip_embedding = [self.vision_encoder(**emb, output_hidden_states=True) for emb in siglip_inputs]
|
209 |
+
# siglip_embedding = [self.vision_encoder(**(emb.to(torch.bfloat16)), output_hidden_states=True) for emb in siglip_inputs]
|
210 |
+
siglip_embedding = torch.cat([self.feature_embedder(emb) for emb in siglip_embedding], dim=1)
|
211 |
+
txt = torch.cat((siglip_embedding, txt), dim=1)
|
212 |
+
siglip_embedding_ids = torch.zeros(
|
213 |
+
siglip_embedding.shape[0], siglip_embedding.shape[1], 3
|
214 |
+
).to(txt_ids.device)
|
215 |
+
txt_ids = torch.cat((siglip_embedding_ids, txt_ids), dim=1)
|
216 |
+
|
217 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
218 |
+
|
219 |
+
# concat ref_img/img
|
220 |
+
img_end = img.shape[1]
|
221 |
+
if ref_img is not None:
|
222 |
+
if isinstance(ref_img, tuple) or isinstance(ref_img, list):
|
223 |
+
img_in = [img] + [self.img_in(ref) for ref in ref_img]
|
224 |
+
img_ids = [ids] + [ref_ids for ref_ids in ref_img_ids]
|
225 |
+
img = torch.cat(img_in, dim=1)
|
226 |
+
ids = torch.cat(img_ids, dim=1)
|
227 |
+
else:
|
228 |
+
img = torch.cat((img, self.img_in(ref_img)), dim=1)
|
229 |
+
ids = torch.cat((ids, ref_img_ids), dim=1)
|
230 |
+
pe = self.pe_embedder(ids)
|
231 |
+
|
232 |
+
for index_block, block in enumerate(self.double_blocks):
|
233 |
+
if self.training and self.gradient_checkpointing:
|
234 |
+
img, txt = torch.utils.checkpoint.checkpoint(
|
235 |
+
block,
|
236 |
+
img=img,
|
237 |
+
txt=txt,
|
238 |
+
vec=vec,
|
239 |
+
pe=pe,
|
240 |
+
use_reentrant=False,
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
244 |
+
|
245 |
+
img = torch.cat((txt, img), 1)
|
246 |
+
for block in self.single_blocks:
|
247 |
+
if self.training and self.gradient_checkpointing:
|
248 |
+
img = torch.utils.checkpoint.checkpoint(
|
249 |
+
block, img, vec=vec, pe=pe, use_reentrant=False
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
img = block(img, vec=vec, pe=pe)
|
253 |
+
img = img[:, txt.shape[1] :, ...]
|
254 |
+
# index img
|
255 |
+
img = img[:, :img_end, ...]
|
256 |
+
|
257 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
258 |
+
return img
|
uso/flux/modules/__pycache__/autoencoder.cpython-311.pyc
ADDED
Binary file (18.9 kB). View file
|
|
uso/flux/modules/__pycache__/conditioner.cpython-311.pyc
ADDED
Binary file (2.6 kB). View file
|
|
uso/flux/modules/__pycache__/layers.cpython-311.pyc
ADDED
Binary file (37.3 kB). View file
|
|
uso/flux/modules/autoencoder.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from dataclasses import dataclass
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from einops import rearrange
|
20 |
+
from torch import Tensor, nn
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class AutoEncoderParams:
|
25 |
+
resolution: int
|
26 |
+
in_channels: int
|
27 |
+
ch: int
|
28 |
+
out_ch: int
|
29 |
+
ch_mult: list[int]
|
30 |
+
num_res_blocks: int
|
31 |
+
z_channels: int
|
32 |
+
scale_factor: float
|
33 |
+
shift_factor: float
|
34 |
+
|
35 |
+
|
36 |
+
def swish(x: Tensor) -> Tensor:
|
37 |
+
return x * torch.sigmoid(x)
|
38 |
+
|
39 |
+
|
40 |
+
class AttnBlock(nn.Module):
|
41 |
+
def __init__(self, in_channels: int):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
|
45 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
46 |
+
|
47 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
48 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
49 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
50 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
51 |
+
|
52 |
+
def attention(self, h_: Tensor) -> Tensor:
|
53 |
+
h_ = self.norm(h_)
|
54 |
+
q = self.q(h_)
|
55 |
+
k = self.k(h_)
|
56 |
+
v = self.v(h_)
|
57 |
+
|
58 |
+
b, c, h, w = q.shape
|
59 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
60 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
61 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
62 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
63 |
+
|
64 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
65 |
+
|
66 |
+
def forward(self, x: Tensor) -> Tensor:
|
67 |
+
return x + self.proj_out(self.attention(x))
|
68 |
+
|
69 |
+
|
70 |
+
class ResnetBlock(nn.Module):
|
71 |
+
def __init__(self, in_channels: int, out_channels: int):
|
72 |
+
super().__init__()
|
73 |
+
self.in_channels = in_channels
|
74 |
+
out_channels = in_channels if out_channels is None else out_channels
|
75 |
+
self.out_channels = out_channels
|
76 |
+
|
77 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
79 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
80 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
81 |
+
if self.in_channels != self.out_channels:
|
82 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
h = x
|
86 |
+
h = self.norm1(h)
|
87 |
+
h = swish(h)
|
88 |
+
h = self.conv1(h)
|
89 |
+
|
90 |
+
h = self.norm2(h)
|
91 |
+
h = swish(h)
|
92 |
+
h = self.conv2(h)
|
93 |
+
|
94 |
+
if self.in_channels != self.out_channels:
|
95 |
+
x = self.nin_shortcut(x)
|
96 |
+
|
97 |
+
return x + h
|
98 |
+
|
99 |
+
|
100 |
+
class Downsample(nn.Module):
|
101 |
+
def __init__(self, in_channels: int):
|
102 |
+
super().__init__()
|
103 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
104 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
105 |
+
|
106 |
+
def forward(self, x: Tensor):
|
107 |
+
pad = (0, 1, 0, 1)
|
108 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
109 |
+
x = self.conv(x)
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class Upsample(nn.Module):
|
114 |
+
def __init__(self, in_channels: int):
|
115 |
+
super().__init__()
|
116 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
117 |
+
|
118 |
+
def forward(self, x: Tensor):
|
119 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
120 |
+
x = self.conv(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class Encoder(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
resolution: int,
|
128 |
+
in_channels: int,
|
129 |
+
ch: int,
|
130 |
+
ch_mult: list[int],
|
131 |
+
num_res_blocks: int,
|
132 |
+
z_channels: int,
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
self.ch = ch
|
136 |
+
self.num_resolutions = len(ch_mult)
|
137 |
+
self.num_res_blocks = num_res_blocks
|
138 |
+
self.resolution = resolution
|
139 |
+
self.in_channels = in_channels
|
140 |
+
# downsampling
|
141 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
142 |
+
|
143 |
+
curr_res = resolution
|
144 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
145 |
+
self.in_ch_mult = in_ch_mult
|
146 |
+
self.down = nn.ModuleList()
|
147 |
+
block_in = self.ch
|
148 |
+
for i_level in range(self.num_resolutions):
|
149 |
+
block = nn.ModuleList()
|
150 |
+
attn = nn.ModuleList()
|
151 |
+
block_in = ch * in_ch_mult[i_level]
|
152 |
+
block_out = ch * ch_mult[i_level]
|
153 |
+
for _ in range(self.num_res_blocks):
|
154 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
155 |
+
block_in = block_out
|
156 |
+
down = nn.Module()
|
157 |
+
down.block = block
|
158 |
+
down.attn = attn
|
159 |
+
if i_level != self.num_resolutions - 1:
|
160 |
+
down.downsample = Downsample(block_in)
|
161 |
+
curr_res = curr_res // 2
|
162 |
+
self.down.append(down)
|
163 |
+
|
164 |
+
# middle
|
165 |
+
self.mid = nn.Module()
|
166 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
167 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
168 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
169 |
+
|
170 |
+
# end
|
171 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
172 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
173 |
+
|
174 |
+
def forward(self, x: Tensor) -> Tensor:
|
175 |
+
# downsampling
|
176 |
+
hs = [self.conv_in(x)]
|
177 |
+
for i_level in range(self.num_resolutions):
|
178 |
+
for i_block in range(self.num_res_blocks):
|
179 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
180 |
+
if len(self.down[i_level].attn) > 0:
|
181 |
+
h = self.down[i_level].attn[i_block](h)
|
182 |
+
hs.append(h)
|
183 |
+
if i_level != self.num_resolutions - 1:
|
184 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
185 |
+
|
186 |
+
# middle
|
187 |
+
h = hs[-1]
|
188 |
+
h = self.mid.block_1(h)
|
189 |
+
h = self.mid.attn_1(h)
|
190 |
+
h = self.mid.block_2(h)
|
191 |
+
# end
|
192 |
+
h = self.norm_out(h)
|
193 |
+
h = swish(h)
|
194 |
+
h = self.conv_out(h)
|
195 |
+
return h
|
196 |
+
|
197 |
+
|
198 |
+
class Decoder(nn.Module):
|
199 |
+
def __init__(
|
200 |
+
self,
|
201 |
+
ch: int,
|
202 |
+
out_ch: int,
|
203 |
+
ch_mult: list[int],
|
204 |
+
num_res_blocks: int,
|
205 |
+
in_channels: int,
|
206 |
+
resolution: int,
|
207 |
+
z_channels: int,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
self.ch = ch
|
211 |
+
self.num_resolutions = len(ch_mult)
|
212 |
+
self.num_res_blocks = num_res_blocks
|
213 |
+
self.resolution = resolution
|
214 |
+
self.in_channels = in_channels
|
215 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
216 |
+
|
217 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
218 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
219 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
220 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
221 |
+
|
222 |
+
# z to block_in
|
223 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
224 |
+
|
225 |
+
# middle
|
226 |
+
self.mid = nn.Module()
|
227 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
228 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
229 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
230 |
+
|
231 |
+
# upsampling
|
232 |
+
self.up = nn.ModuleList()
|
233 |
+
for i_level in reversed(range(self.num_resolutions)):
|
234 |
+
block = nn.ModuleList()
|
235 |
+
attn = nn.ModuleList()
|
236 |
+
block_out = ch * ch_mult[i_level]
|
237 |
+
for _ in range(self.num_res_blocks + 1):
|
238 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
239 |
+
block_in = block_out
|
240 |
+
up = nn.Module()
|
241 |
+
up.block = block
|
242 |
+
up.attn = attn
|
243 |
+
if i_level != 0:
|
244 |
+
up.upsample = Upsample(block_in)
|
245 |
+
curr_res = curr_res * 2
|
246 |
+
self.up.insert(0, up) # prepend to get consistent order
|
247 |
+
|
248 |
+
# end
|
249 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
250 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
251 |
+
|
252 |
+
def forward(self, z: Tensor) -> Tensor:
|
253 |
+
# z to block_in
|
254 |
+
h = self.conv_in(z)
|
255 |
+
|
256 |
+
# middle
|
257 |
+
h = self.mid.block_1(h)
|
258 |
+
h = self.mid.attn_1(h)
|
259 |
+
h = self.mid.block_2(h)
|
260 |
+
|
261 |
+
# upsampling
|
262 |
+
for i_level in reversed(range(self.num_resolutions)):
|
263 |
+
for i_block in range(self.num_res_blocks + 1):
|
264 |
+
h = self.up[i_level].block[i_block](h)
|
265 |
+
if len(self.up[i_level].attn) > 0:
|
266 |
+
h = self.up[i_level].attn[i_block](h)
|
267 |
+
if i_level != 0:
|
268 |
+
h = self.up[i_level].upsample(h)
|
269 |
+
|
270 |
+
# end
|
271 |
+
h = self.norm_out(h)
|
272 |
+
h = swish(h)
|
273 |
+
h = self.conv_out(h)
|
274 |
+
return h
|
275 |
+
|
276 |
+
|
277 |
+
class DiagonalGaussian(nn.Module):
|
278 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
279 |
+
super().__init__()
|
280 |
+
self.sample = sample
|
281 |
+
self.chunk_dim = chunk_dim
|
282 |
+
|
283 |
+
def forward(self, z: Tensor) -> Tensor:
|
284 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
285 |
+
if self.sample:
|
286 |
+
std = torch.exp(0.5 * logvar)
|
287 |
+
return mean + std * torch.randn_like(mean)
|
288 |
+
else:
|
289 |
+
return mean
|
290 |
+
|
291 |
+
|
292 |
+
class AutoEncoder(nn.Module):
|
293 |
+
def __init__(self, params: AutoEncoderParams):
|
294 |
+
super().__init__()
|
295 |
+
self.encoder = Encoder(
|
296 |
+
resolution=params.resolution,
|
297 |
+
in_channels=params.in_channels,
|
298 |
+
ch=params.ch,
|
299 |
+
ch_mult=params.ch_mult,
|
300 |
+
num_res_blocks=params.num_res_blocks,
|
301 |
+
z_channels=params.z_channels,
|
302 |
+
)
|
303 |
+
self.decoder = Decoder(
|
304 |
+
resolution=params.resolution,
|
305 |
+
in_channels=params.in_channels,
|
306 |
+
ch=params.ch,
|
307 |
+
out_ch=params.out_ch,
|
308 |
+
ch_mult=params.ch_mult,
|
309 |
+
num_res_blocks=params.num_res_blocks,
|
310 |
+
z_channels=params.z_channels,
|
311 |
+
)
|
312 |
+
self.reg = DiagonalGaussian()
|
313 |
+
|
314 |
+
self.scale_factor = params.scale_factor
|
315 |
+
self.shift_factor = params.shift_factor
|
316 |
+
|
317 |
+
def encode(self, x: Tensor) -> Tensor:
|
318 |
+
z = self.reg(self.encoder(x))
|
319 |
+
z = self.scale_factor * (z - self.shift_factor)
|
320 |
+
return z
|
321 |
+
|
322 |
+
def decode(self, z: Tensor) -> Tensor:
|
323 |
+
z = z / self.scale_factor + self.shift_factor
|
324 |
+
return self.decoder(z)
|
325 |
+
|
326 |
+
def forward(self, x: Tensor) -> Tensor:
|
327 |
+
return self.decode(self.encode(x))
|
uso/flux/modules/conditioner.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from torch import Tensor, nn
|
17 |
+
from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel,
|
18 |
+
T5Tokenizer)
|
19 |
+
|
20 |
+
|
21 |
+
class HFEmbedder(nn.Module):
|
22 |
+
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
23 |
+
super().__init__()
|
24 |
+
self.is_clip = "clip" in version.lower()
|
25 |
+
self.max_length = max_length
|
26 |
+
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
27 |
+
|
28 |
+
if self.is_clip:
|
29 |
+
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
30 |
+
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
31 |
+
else:
|
32 |
+
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
33 |
+
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
34 |
+
|
35 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
36 |
+
|
37 |
+
def forward(self, text: list[str]) -> Tensor:
|
38 |
+
batch_encoding = self.tokenizer(
|
39 |
+
text,
|
40 |
+
truncation=True,
|
41 |
+
max_length=self.max_length,
|
42 |
+
return_length=False,
|
43 |
+
return_overflowing_tokens=False,
|
44 |
+
padding="max_length",
|
45 |
+
return_tensors="pt",
|
46 |
+
)
|
47 |
+
|
48 |
+
outputs = self.hf_module(
|
49 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
50 |
+
attention_mask=None,
|
51 |
+
output_hidden_states=False,
|
52 |
+
)
|
53 |
+
return outputs[self.output_key]
|