# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
import os
from pathlib import Path
import gradio as gr
import torch
import spaces
from uso.flux.pipeline import USOPipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
with open("assets/uso_text.svg", "r", encoding="utf-8") as svg_file:
text_content = svg_file.read()
with open("assets/uso_logo.svg", "r", encoding="utf-8") as svg_file:
logo_content = svg_file.read()
title = f"""
{text_content}
by UXO Team
{logo_content}
""".strip()
badges_text = r"""
""".strip()
tips = """
**What is USO?** 🎨
USO is a unified style-subject optimized customization model and the latest addition to the UXO family ( USO and UNO).
It can freely combine any subjects with any styles in any scenarios.
**How to use?** 💡
We provide step-by-step instructions in our Github Repo.
Additionally, try the examples provided below the demo to quickly get familiar with USO and spark your creativity!
The model is trained on 1024x1024 resolution and supports 3 types of usage. 📌 Tips:
* **Only content img**: support following types:
* Subject/Identity-driven (supports natural prompt, e.g., *A clock on the table.* *The woman near the sea.*, excels in producing **photorealistic portraits**)
* Style edit (layout-preserved): *Transform the image into Ghibli style/Pixel style/Retro comic style/Watercolor painting style...*.
* Style edit (layout-shift): *Ghibli style, the man on the beach.*.
* **Only style img**: Reference input style and generate anything following prompt. Excelling in this and further support multiple style references (in beta).
* **Content img + style img**: Place the content into the desired style.
* Layout-preserved: set prompt to **empty**.
* Layout-shift: using natural prompt. """
star = r"""
If USO is helpful, please help to ⭐ our Github Repo. Thanks a lot!"""
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir() or len(os.listdir(example)) == 0:
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = []
# example_list.append(example_dict["usage"]) # case for
example_list.append(example_dict["prompt"]) # prompt
for key in ["image_ref1", "image_ref2", "image_ref3"]:
if key in example_dict:
example_list.append(str(example / example_dict[key]))
else:
example_list.append(None)
example_list.append(example_dict["seed"])
ans.append(example_list)
return ans
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
):
pipeline = USOPipeline(
model_type, device, offload, only_lora=True, lora_rank=128, hf_download=True
)
print("USOPipeline loaded successfully")
siglip_processor = SiglipImageProcessor.from_pretrained(
"google/siglip-so400m-patch14-384"
)
siglip_model = SiglipVisionModel.from_pretrained(
"google/siglip-so400m-patch14-384"
)
siglip_model.eval()
siglip_model.to(device)
pipeline.model.vision_encoder = siglip_model
pipeline.model.vision_encoder_processor = siglip_processor
print("SigLIP model loaded successfully")
pipeline.gradio_generate = spaces.GPU(duration=120)(pipeline.gradio_generate)
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(badges_text)
gr.Markdown(tips)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A beautiful woman.")
with gr.Row():
image_prompt1 = gr.Image(
label="Content Reference Img", visible=True, interactive=True, type="pil"
)
image_prompt2 = gr.Image(
label="Style Reference Img", visible=True, interactive=True, type="pil"
)
image_prompt3 = gr.Image(
label="Extra Style Reference Img (Beta)", visible=True, interactive=True, type="pil"
)
with gr.Row():
with gr.Row():
width = gr.Slider(
512, 1536, 1024, step=16, label="Generation Width"
)
height = gr.Slider(
512, 1536, 1024, step=16, label="Generation Height"
)
with gr.Row():
with gr.Row():
keep_size = gr.Checkbox(
label="Keep input size",
value=False,
interactive=True
)
with gr.Column():
gr.Markdown("Set it to True if you only need style editing or want to keep the layout.")
with gr.Accordion("Advanced Options", open=True):
with gr.Row():
num_steps = gr.Slider(
1, 50, 25, step=1, label="Number of steps"
)
guidance = gr.Slider(
1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True
)
content_long_size = gr.Slider(
0, 1024, 512, step=16, label="Content reference size"
)
seed = gr.Number(-1, label="Seed (-1 for random)")
generate_btn = gr.Button("Generate")
gr.Markdown(star)
with gr.Column():
output_image = gr.Image(label="Generated Image")
download_btn = gr.File(
label="Download full-resolution", type="filepath", interactive=False
)
inputs = [
prompt,
image_prompt1,
image_prompt2,
image_prompt3,
seed,
width,
height,
guidance,
num_steps,
keep_size,
content_long_size,
]
generate_btn.click(
fn=pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
example_text = gr.Text("", visible=False, label="Case For:")
examples = get_examples("./assets/gradio_examples")
gr.Examples(
examples=examples,
inputs=[
prompt,
image_prompt1,
image_prompt2,
image_prompt3,
seed,
],
# cache_examples='lazy',
outputs=[output_image, download_btn],
fn=pipeline.gradio_generate,
label='row 1-4: identity/subject-driven; row 5-7: style-subject-driven; row 8-9: style-driven; row 10-12: multi-style-driven task; row 13: txt2img',
examples_per_page=15
)
return demo
if __name__ == "__main__":
from typing import Literal
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell", "flux-krea-dev"] = "flux-dev"
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
offload: bool = dataclasses.field(
default=False,
metadata={
"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."
},
)
port: int = 7860
parser = HfArgumentParser([AppArgs])
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
args = args_tuple[0]
demo = create_demo(args.name, args.device, args.offload)
demo.launch(server_port=args.port, ssr_mode=False)