# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. # Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass import torch from einops import rearrange, repeat from torch import Tensor, nn from ..math import attention, rope class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: list[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int): super().__init__() self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) self.silu = nn.SiLU() self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class RMSNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.scale = nn.Parameter(torch.ones(dim)) def forward(self, x: Tensor): x_dtype = x.dtype x = x.float() rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) return ((x * rrms) * self.scale.float()).to(dtype=x_dtype) class QKNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.query_norm = RMSNorm(dim) self.key_norm = RMSNorm(dim) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: q = self.query_norm(q) k = self.key_norm(k) return q.to(v), k.to(v) class LoRALinearLayer(nn.Module): def __init__( self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None, ): super().__init__() self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states): orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class FLuxSelfAttnProcessor: def __call__(self, attn, x, pe, **attention_kwargs): qkv = attn.qkv(x) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = attn.norm(q, k, v) x = attention(q, k, v, pe=pe) x = attn.proj(x) return x class LoraFluxAttnProcessor(nn.Module): def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1): super().__init__() self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha) self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha) self.lora_weight = lora_weight def __call__(self, attn, x, pe, **attention_kwargs): qkv = attn.qkv(x) + self.qkv_lora(x) * self.lora_weight q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = attn.norm(q, k, v) x = attention(q, k, v, pe=pe) x = attn.proj(x) + self.proj_lora(x) * self.lora_weight return x class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.norm = QKNorm(head_dim) self.proj = nn.Linear(dim, dim) def forward(): pass @dataclass class ModulationOut: shift: Tensor scale: Tensor gate: Tensor class Modulation(nn.Module): def __init__(self, dim: int, double: bool): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: out = self.lin(nn.functional.silu(vec))[:, None, :].chunk( self.multiplier, dim=-1 ) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, ) class DoubleStreamBlockLoraProcessor(nn.Module): def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1): super().__init__() self.qkv_lora1 = LoRALinearLayer(dim, dim * 3, rank, network_alpha) self.proj_lora1 = LoRALinearLayer(dim, dim, rank, network_alpha) self.qkv_lora2 = LoRALinearLayer(dim, dim * 3, rank, network_alpha) self.proj_lora2 = LoRALinearLayer(dim, dim, rank, network_alpha) self.lora_weight = lora_weight def forward(self, attn, img, txt, vec, pe, **attention_kwargs): img_mod1, img_mod2 = attn.img_mod(vec) txt_mod1, txt_mod2 = attn.txt_mod(vec) # prepare image for attention img_modulated = attn.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = ( attn.img_attn.qkv(img_modulated) + self.qkv_lora1(img_modulated) * self.lora_weight ) img_q, img_k, img_v = rearrange( img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads ) img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = attn.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = ( attn.txt_attn.qkv(txt_modulated) + self.qkv_lora2(txt_modulated) * self.lora_weight ) txt_q, txt_k, txt_v = rearrange( txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads ) txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v) # run actual attention q = torch.cat((txt_q, img_q), dim=2) k = torch.cat((txt_k, img_k), dim=2) v = torch.cat((txt_v, img_v), dim=2) attn1 = attention(q, k, v, pe=pe) txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :] # calculate the img bloks img = img + img_mod1.gate * ( attn.img_attn.proj(img_attn) + self.proj_lora1(img_attn) * self.lora_weight ) img = img + img_mod2.gate * attn.img_mlp( (1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift ) # calculate the txt bloks txt = txt + txt_mod1.gate * ( attn.txt_attn.proj(txt_attn) + self.proj_lora2(txt_attn) * self.lora_weight ) txt = txt + txt_mod2.gate * attn.txt_mlp( (1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift ) return img, txt class DoubleStreamBlockProcessor: def __call__(self, attn, img, txt, vec, pe, **attention_kwargs): img_mod1, img_mod2 = attn.img_mod(vec) txt_mod1, txt_mod2 = attn.txt_mod(vec) # prepare image for attention img_modulated = attn.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = attn.img_attn.qkv(img_modulated) img_q, img_k, img_v = rearrange( img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim ) img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = attn.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = attn.txt_attn.qkv(txt_modulated) txt_q, txt_k, txt_v = rearrange( txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim ) txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v) # run actual attention q = torch.cat((txt_q, img_q), dim=2) k = torch.cat((txt_k, img_k), dim=2) v = torch.cat((txt_v, img_v), dim=2) attn1 = attention(q, k, v, pe=pe) txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :] # calculate the img bloks img = img + img_mod1.gate * attn.img_attn.proj(img_attn) img = img + img_mod2.gate * attn.img_mlp( (1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift ) # calculate the txt bloks txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn) txt = txt + txt_mod2.gate * attn.txt_mlp( (1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift ) return img, txt class DoubleStreamBlock(nn.Module): def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False ): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.head_dim = hidden_size // num_heads self.img_mod = Modulation(hidden_size, double=True) self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias ) self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_mlp = nn.Sequential( nn.Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), nn.Linear(mlp_hidden_dim, hidden_size, bias=True), ) self.txt_mod = Modulation(hidden_size, double=True) self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias ) self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_mlp = nn.Sequential( nn.Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), nn.Linear(mlp_hidden_dim, hidden_size, bias=True), ) processor = DoubleStreamBlockProcessor() self.set_processor(processor) def set_processor(self, processor) -> None: self.processor = processor def get_processor(self): return self.processor def forward( self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, image_proj: Tensor = None, ip_scale: float = 1.0, ) -> tuple[Tensor, Tensor]: if image_proj is None: return self.processor(self, img, txt, vec, pe) else: return self.processor(self, img, txt, vec, pe, image_proj, ip_scale) class SingleStreamBlockLoraProcessor(nn.Module): def __init__( self, dim: int, rank: int = 4, network_alpha=None, lora_weight: float = 1 ): super().__init__() self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha) self.proj_lora = LoRALinearLayer(15360, dim, rank, network_alpha) self.lora_weight = lora_weight def forward(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: mod, _ = attn.modulation(vec) x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift qkv, mlp = torch.split( attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1 ) qkv = qkv + self.qkv_lora(x_mod) * self.lora_weight q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads) q, k = attn.norm(q, k, v) # compute attention attn_1 = attention(q, k, v, pe=pe) # compute activation in mlp stream, cat again and run second linear layer output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2)) output = ( output + self.proj_lora(torch.cat((attn_1, attn.mlp_act(mlp)), 2)) * self.lora_weight ) output = x + mod.gate * output return output class SingleStreamBlockProcessor: def __call__( self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor, **attention_kwargs ) -> Tensor: mod, _ = attn.modulation(vec) x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift qkv, mlp = torch.split( attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1 ) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads) q, k = attn.norm(q, k, v) # compute attention attn_1 = attention(q, k, v, pe=pe) # compute activation in mlp stream, cat again and run second linear layer output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2)) output = x + mod.gate * output return output class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float | None = None, ): super().__init__() self.hidden_dim = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads self.scale = qk_scale or self.head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) # qkv and mlp_in self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) # proj and mlp_out self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) self.norm = QKNorm(self.head_dim) self.hidden_size = hidden_size self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.mlp_act = nn.GELU(approximate="tanh") self.modulation = Modulation(hidden_size, double=False) processor = SingleStreamBlockProcessor() self.set_processor(processor) def set_processor(self, processor) -> None: self.processor = processor def get_processor(self): return self.processor def forward( self, x: Tensor, vec: Tensor, pe: Tensor, image_proj: Tensor | None = None, ip_scale: float = 1.0, ) -> Tensor: if image_proj is None: return self.processor(self, x, vec, pe) else: return self.processor(self, x, vec, pe, image_proj, ip_scale) class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, bias=True ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x: Tensor, vec: Tensor) -> Tensor: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x class SigLIPMultiFeatProjModel(torch.nn.Module): """ SigLIP Multi-Feature Projection Model for processing style features from different layers and projecting them into a unified hidden space. Args: siglip_token_nums (int): Number of SigLIP tokens, default 257 style_token_nums (int): Number of style tokens, default 256 siglip_token_dims (int): Dimension of SigLIP tokens, default 1536 hidden_size (int): Hidden layer size, default 3072 context_layer_norm (bool): Whether to use context layer normalization, default False """ def __init__( self, siglip_token_nums: int = 257, style_token_nums: int = 256, siglip_token_dims: int = 1536, hidden_size: int = 3072, context_layer_norm: bool = False, ): super().__init__() # High-level feature processing (layer -2) self.high_embedding_linear = nn.Sequential( nn.Linear(siglip_token_nums, style_token_nums), nn.SiLU() ) self.high_layer_norm = ( nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() ) self.high_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True) # Mid-level feature processing (layer -11) self.mid_embedding_linear = nn.Sequential( nn.Linear(siglip_token_nums, style_token_nums), nn.SiLU() ) self.mid_layer_norm = ( nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() ) self.mid_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True) # Low-level feature processing (layer -20) self.low_embedding_linear = nn.Sequential( nn.Linear(siglip_token_nums, style_token_nums), nn.SiLU() ) self.low_layer_norm = ( nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() ) self.low_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True) def forward(self, siglip_outputs): """ Forward pass function Args: siglip_outputs: Output from SigLIP model, containing hidden_states Returns: torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size] """ dtype = next(self.high_embedding_linear.parameters()).dtype # Process high-level features (layer -2) high_embedding = self._process_layer_features( siglip_outputs.hidden_states[-2], self.high_embedding_linear, self.high_layer_norm, self.high_projection, dtype ) # Process mid-level features (layer -11) mid_embedding = self._process_layer_features( siglip_outputs.hidden_states[-11], self.mid_embedding_linear, self.mid_layer_norm, self.mid_projection, dtype ) # Process low-level features (layer -20) low_embedding = self._process_layer_features( siglip_outputs.hidden_states[-20], self.low_embedding_linear, self.low_layer_norm, self.low_projection, dtype ) # Concatenate features from all layers return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1) def _process_layer_features( self, hidden_states: torch.Tensor, embedding_linear: nn.Module, layer_norm: nn.Module, projection: nn.Module, dtype: torch.dtype ) -> torch.Tensor: """ Helper function to process features from a single layer Args: hidden_states: Input hidden states [bs, seq_len, dim] embedding_linear: Embedding linear layer layer_norm: Layer normalization projection: Projection layer dtype: Target data type Returns: torch.Tensor: Processed features [bs, style_token_nums, hidden_size] """ # Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim] embedding = embedding_linear( hidden_states.to(dtype).transpose(1, 2) ).transpose(1, 2) # Apply layer normalization embedding = layer_norm(embedding) # Project to target hidden space embedding = projection(embedding) return embedding