# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. # Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import math from typing import Literal, Optional from torch import Tensor import torch from einops import rearrange from PIL import ExifTags, Image import torchvision.transforms.functional as TVF from uso.flux.modules.layers import ( DoubleStreamBlockLoraProcessor, DoubleStreamBlockProcessor, SingleStreamBlockLoraProcessor, SingleStreamBlockProcessor, ) from uso.flux.sampling import denoise, get_noise, get_schedule, prepare_multi_ip, unpack from uso.flux.util import ( get_lora_rank, load_ae, load_checkpoint, load_clip, load_flow_model, load_flow_model_only_lora, load_t5, ) def find_nearest_scale(image_h, image_w, predefined_scales): """ 根据图片的高度和宽度,找到最近的预定义尺度。 :param image_h: 图片的高度 :param image_w: 图片的宽度 :param predefined_scales: 预定义尺度列表 [(h1, w1), (h2, w2), ...] :return: 最近的预定义尺度 (h, w) """ # 计算输入图片的长宽比 image_ratio = image_h / image_w # 初始化变量以存储最小差异和最近的尺度 min_diff = float("inf") nearest_scale = None # 遍历所有预定义尺度,找到与输入图片长宽比最接近的尺度 for scale_h, scale_w in predefined_scales: predefined_ratio = scale_h / scale_w diff = abs(predefined_ratio - image_ratio) if diff < min_diff: min_diff = diff nearest_scale = (scale_h, scale_w) return nearest_scale def preprocess_ref(raw_image: Image.Image, long_size: int = 512, scale_ratio: int = 1): # 获取原始图像的宽度和高度 image_w, image_h = raw_image.size if image_w == image_h and image_w == 16: return raw_image # 计算长边和短边 if image_w >= image_h: new_w = long_size new_h = int((long_size / image_w) * image_h) else: new_h = long_size new_w = int((long_size / image_h) * image_w) # 按新的宽高进行等比例缩放 raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS) # 为了能让canny img进行scale scale_ratio = int(scale_ratio) target_w = new_w // (16 * scale_ratio) * (16 * scale_ratio) target_h = new_h // (16 * scale_ratio) * (16 * scale_ratio) # 计算裁剪的起始坐标以实现中心裁剪 left = (new_w - target_w) // 2 top = (new_h - target_h) // 2 right = left + target_w bottom = top + target_h # 进行中心裁剪 raw_image = raw_image.crop((left, top, right, bottom)) # 转换为 RGB 模式 raw_image = raw_image.convert("RGB") return raw_image def resize_and_centercrop_image(image, target_height_ref1, target_width_ref1): target_height_ref1 = int(target_height_ref1 // 64 * 64) target_width_ref1 = int(target_width_ref1 // 64 * 64) h, w = image.shape[-2:] if h < target_height_ref1 or w < target_width_ref1: # 计算长宽比 aspect_ratio = w / h if h < target_height_ref1: new_h = target_height_ref1 new_w = new_h * aspect_ratio if new_w < target_width_ref1: new_w = target_width_ref1 new_h = new_w / aspect_ratio else: new_w = target_width_ref1 new_h = new_w / aspect_ratio if new_h < target_height_ref1: new_h = target_height_ref1 new_w = new_h * aspect_ratio else: aspect_ratio = w / h tgt_aspect_ratio = target_width_ref1 / target_height_ref1 if aspect_ratio > tgt_aspect_ratio: new_h = target_height_ref1 new_w = new_h * aspect_ratio else: new_w = target_width_ref1 new_h = new_w / aspect_ratio # 使用 TVF.resize 进行图像缩放 image = TVF.resize(image, (math.ceil(new_h), math.ceil(new_w))) # 计算中心裁剪的参数 top = (image.shape[-2] - target_height_ref1) // 2 left = (image.shape[-1] - target_width_ref1) // 2 # 使用 TVF.crop 进行中心裁剪 image = TVF.crop(image, top, left, target_height_ref1, target_width_ref1) return image class USOPipeline: def __init__( self, model_type: str, device: torch.device, offload: bool = False, only_lora: bool = False, lora_rank: int = 16, hf_download: bool = True, ): self.device = device self.offload = offload self.model_type = model_type self.clip = load_clip(self.device) self.t5 = load_t5(self.device, max_length=512) self.ae = load_ae(model_type, device="cpu" if offload else self.device) self.use_fp8 = "fp8" in model_type if only_lora: self.model = load_flow_model_only_lora( model_type, device="cpu" if offload else self.device, lora_rank=lora_rank, use_fp8=self.use_fp8, hf_download=hf_download, ) else: self.model = load_flow_model( model_type, device="cpu" if offload else self.device ) def load_ckpt(self, ckpt_path): if ckpt_path is not None: from safetensors.torch import load_file as load_sft print("Loading checkpoint to replace old keys") # load_sft doesn't support torch.device if ckpt_path.endswith("safetensors"): sd = load_sft(ckpt_path, device="cpu") missing, unexpected = self.model.load_state_dict( sd, strict=False, assign=True ) else: dit_state = torch.load(ckpt_path, map_location="cpu") sd = {} for k in dit_state.keys(): sd[k.replace("module.", "")] = dit_state[k] missing, unexpected = self.model.load_state_dict( sd, strict=False, assign=True ) self.model.to(str(self.device)) print(f"missing keys: {missing}\n\n\n\n\nunexpected keys: {unexpected}") def set_lora( self, local_path: str = None, repo_id: str = None, name: str = None, lora_weight: int = 0.7, ): checkpoint = load_checkpoint(local_path, repo_id, name) self.update_model_with_lora(checkpoint, lora_weight) def set_lora_from_collection( self, lora_type: str = "realism", lora_weight: int = 0.7 ): checkpoint = load_checkpoint( None, self.hf_lora_collection, self.lora_types_to_names[lora_type] ) self.update_model_with_lora(checkpoint, lora_weight) def update_model_with_lora(self, checkpoint, lora_weight): rank = get_lora_rank(checkpoint) lora_attn_procs = {} for name, _ in self.model.attn_processors.items(): lora_state_dict = {} for k in checkpoint.keys(): if name in k: lora_state_dict[k[len(name) + 1 :]] = checkpoint[k] * lora_weight if len(lora_state_dict): if name.startswith("single_blocks"): lora_attn_procs[name] = SingleStreamBlockLoraProcessor( dim=3072, rank=rank ) else: lora_attn_procs[name] = DoubleStreamBlockLoraProcessor( dim=3072, rank=rank ) lora_attn_procs[name].load_state_dict(lora_state_dict) lora_attn_procs[name].to(self.device) else: if name.startswith("single_blocks"): lora_attn_procs[name] = SingleStreamBlockProcessor() else: lora_attn_procs[name] = DoubleStreamBlockProcessor() self.model.set_attn_processor(lora_attn_procs) def __call__( self, prompt: str, width: int = 512, height: int = 512, guidance: float = 4, num_steps: int = 50, seed: int = 123456789, **kwargs, ): width = 16 * (width // 16) height = 16 * (height // 16) device_type = self.device if isinstance(self.device, str) else self.device.type with torch.autocast( enabled=self.use_fp8, device_type=device_type, dtype=torch.bfloat16 ): return self.forward( prompt, width, height, guidance, num_steps, seed, **kwargs ) @torch.inference_mode() def gradio_generate( self, prompt: str, image_prompt1: Image.Image, image_prompt2: Image.Image, image_prompt3: Image.Image, seed: int, width: int = 1024, height: int = 1024, guidance: float = 4, num_steps: int = 25, keep_size: bool = False, content_long_size: int = 512, ): ref_content_imgs = [image_prompt1] ref_content_imgs = [img for img in ref_content_imgs if isinstance(img, Image.Image)] ref_content_imgs = [preprocess_ref(img, content_long_size) for img in ref_content_imgs] ref_style_imgs = [image_prompt2, image_prompt3] ref_style_imgs = [img for img in ref_style_imgs if isinstance(img, Image.Image)] ref_style_imgs = [self.model.vision_encoder_processor(img, return_tensors="pt").to(self.device) for img in ref_style_imgs] seed = seed if seed != -1 else torch.randint(0, 10**8, (1,)).item() # whether keep input image size if keep_size and len(ref_content_imgs)>0: width, height = ref_content_imgs[0].size width, height = int(width * (1024 / content_long_size)), int(height * (1024 / content_long_size)) img = self( prompt=prompt, width=width, height=height, guidance=guidance, num_steps=num_steps, seed=seed, ref_imgs=ref_content_imgs, siglip_inputs=ref_style_imgs, ) filename = f"output/gradio/{seed}_{prompt[:20]}.png" os.makedirs(os.path.dirname(filename), exist_ok=True) exif_data = Image.Exif() exif_data[ExifTags.Base.Make] = "USO" exif_data[ExifTags.Base.Model] = self.model_type info = f"{prompt=}, {seed=}, {width=}, {height=}, {guidance=}, {num_steps=}" exif_data[ExifTags.Base.ImageDescription] = info img.save(filename, format="png", exif=exif_data) return img, filename @torch.inference_mode def forward( self, prompt: str, width: int, height: int, guidance: float, num_steps: int, seed: int, ref_imgs: list[Image.Image] | None = None, pe: Literal["d", "h", "w", "o"] = "d", siglip_inputs: list[Tensor] | None = None, ): x = get_noise( 1, height, width, device=self.device, dtype=torch.bfloat16, seed=seed ) timesteps = get_schedule( num_steps, (width // 8) * (height // 8) // (16 * 16), shift=True, ) if self.offload: self.ae.encoder = self.ae.encoder.to(self.device) x_1_refs = [ self.ae.encode( (TVF.to_tensor(ref_img) * 2.0 - 1.0) .unsqueeze(0) .to(self.device, torch.float32) ).to(torch.bfloat16) for ref_img in ref_imgs ] if self.offload: self.offload_model_to_cpu(self.ae.encoder) self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device) inp_cond = prepare_multi_ip( t5=self.t5, clip=self.clip, img=x, prompt=prompt, ref_imgs=x_1_refs, pe=pe, ) if self.offload: self.offload_model_to_cpu(self.t5, self.clip) self.model = self.model.to(self.device) x = denoise( self.model, **inp_cond, timesteps=timesteps, guidance=guidance, siglip_inputs=siglip_inputs, ) if self.offload: self.offload_model_to_cpu(self.model) self.ae.decoder.to(x.device) x = unpack(x.float(), height, width) x = self.ae.decode(x) self.offload_model_to_cpu(self.ae.decoder) x1 = x.clamp(-1, 1) x1 = rearrange(x1[-1], "c h w -> h w c") output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy()) return output_img def offload_model_to_cpu(self, *models): if not self.offload: return for model in models: model.cpu() torch.cuda.empty_cache()