Spaces:
Sleeping
Sleeping
Sharan Thakur
commited on
Commit
·
4eafb07
1
Parent(s):
31e6c7f
Initial commit
Browse files- README.md +22 -1
- reports/historic_data.csv +2 -0
- requirements.txt +8 -0
- src/app.py +277 -0
- src/emission_calculator/calculator.py +257 -0
- src/rep +0 -0
README.md
CHANGED
|
@@ -11,4 +11,25 @@ license: mit
|
|
| 11 |
short_description: This project is a Carbon Footprint Calculator and Visualizer
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
short_description: This project is a Carbon Footprint Calculator and Visualizer
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Carbon Footprint Visualizer 🌍
|
| 15 |
+
|
| 16 |
+
## Overview
|
| 17 |
+
|
| 18 |
+
A Python-based web application that helps organizations calculate, visualize, and analyze their carbon footprint through an intuitive Gradio interface.
|
| 19 |
+
|
| 20 |
+
## 🚀 Features
|
| 21 |
+
|
| 22 |
+
- **Comprehensive Carbon Emission Calculation**
|
| 23 |
+
- Analyze emissions across multiple dimensions:
|
| 24 |
+
- Electricity consumption
|
| 25 |
+
- Gas usage
|
| 26 |
+
- Transportation
|
| 27 |
+
- Waste management
|
| 28 |
+
- **Interactive Visualization**
|
| 29 |
+
- Generate detailed pie and bar charts
|
| 30 |
+
- Visualize carbon impact across different categories
|
| 31 |
+
- **Personalized Reporting**
|
| 32 |
+
- Export customized PDF reports
|
| 33 |
+
- Downloadable carbon footprint analysis
|
| 34 |
+
- **Company Data Visualization**
|
| 35 |
+
- See all companies' emissions ranges
|
reports/historic_data.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Name,Energy Usage,Waste Generated,Business Travel
|
| 2 |
+
Company 1,1024699.9871999999,49929.88,44083.78333333334
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
plotly
|
| 2 |
+
"ipywidgets>=7.6"
|
| 3 |
+
"jupyterlab>=3"
|
| 4 |
+
notebook
|
| 5 |
+
gradio
|
| 6 |
+
kaleido
|
| 7 |
+
chart_studio
|
| 8 |
+
pandas
|
src/app.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
|
| 3 |
+
from csv import DictWriter
|
| 4 |
+
import os.path as os_path
|
| 5 |
+
|
| 6 |
+
from plotly.graph_objects import Figure
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from pandas import read_csv, DataFrame
|
| 9 |
+
import emission_calculator.calculator as ec
|
| 10 |
+
|
| 11 |
+
DATA_PATH = "./reports/historic_data.csv"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def compute_history() -> Figure:
|
| 15 |
+
if not os_path.exists(DATA_PATH):
|
| 16 |
+
f = open(DATA_PATH, "xt")
|
| 17 |
+
f.write("Name,Energy Usage,Waste Generated,Business Travel")
|
| 18 |
+
f.close()
|
| 19 |
+
df = DataFrame.from_dict({})
|
| 20 |
+
else:
|
| 21 |
+
df = read_csv(DATA_PATH)
|
| 22 |
+
return ec.draw_historic_figure(df)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def validate_input(
|
| 26 |
+
company_name: str,
|
| 27 |
+
avg_electric_bill: float,
|
| 28 |
+
avg_gas_bill: float,
|
| 29 |
+
avg_transport_cost: float,
|
| 30 |
+
monthly_waste_generated: float,
|
| 31 |
+
recycled_waste_percent: float,
|
| 32 |
+
annual_travel_kms: float,
|
| 33 |
+
fuel_efficiency: float,
|
| 34 |
+
) -> None:
|
| 35 |
+
"""
|
| 36 |
+
Comprehensive validation for input parameters with non-zero requirements
|
| 37 |
+
"""
|
| 38 |
+
# Company Name Validation
|
| 39 |
+
if not company_name or company_name.isspace():
|
| 40 |
+
raise gr.Error("Company name cannot be empty or just whitespace!")
|
| 41 |
+
|
| 42 |
+
if len(company_name) > 100:
|
| 43 |
+
raise gr.Error("Company name is too long (maximum 100 characters)!")
|
| 44 |
+
|
| 45 |
+
# Non-Zero Input Validation
|
| 46 |
+
non_zero_fields = [
|
| 47 |
+
("Electricity Bill", avg_electric_bill),
|
| 48 |
+
("Gas Bill", avg_gas_bill),
|
| 49 |
+
("Transport Cost", avg_transport_cost),
|
| 50 |
+
("Monthly Waste", monthly_waste_generated),
|
| 51 |
+
("Annual Travel Distance", annual_travel_kms),
|
| 52 |
+
("Fuel Efficiency", fuel_efficiency),
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
for name, value in non_zero_fields:
|
| 56 |
+
try:
|
| 57 |
+
float_val = float(value)
|
| 58 |
+
except (TypeError, ValueError):
|
| 59 |
+
raise gr.Error(f"{name} must be a valid number!")
|
| 60 |
+
|
| 61 |
+
if float_val <= 0:
|
| 62 |
+
raise gr.Error(f"{name} must be a positive number greater than zero!")
|
| 63 |
+
|
| 64 |
+
# Additional realistic range checks
|
| 65 |
+
if name == "Electricity Bill" and float_val > 10000:
|
| 66 |
+
raise gr.Error(
|
| 67 |
+
"Electricity bill seems unrealistically high. Please check the amount!"
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
if name == "Monthly Waste" and float_val > 1000:
|
| 71 |
+
raise gr.Error(
|
| 72 |
+
"Monthly waste generation seems extremely high. Please verify!"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Percentage-specific validation
|
| 76 |
+
try:
|
| 77 |
+
recycled_percent = float(recycled_waste_percent)
|
| 78 |
+
except (TypeError, ValueError):
|
| 79 |
+
raise gr.Error("Recycled waste percentage must be a valid number!")
|
| 80 |
+
|
| 81 |
+
if recycled_percent < 0 or recycled_percent > 100:
|
| 82 |
+
raise gr.Error("Recycled waste percentage must be between 0 and 100!")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def compute(
|
| 86 |
+
company_name: str,
|
| 87 |
+
avg_electric_bill: float,
|
| 88 |
+
avg_gas_bill: float,
|
| 89 |
+
avg_transport_cost: float,
|
| 90 |
+
monthly_waste_generated: float,
|
| 91 |
+
recycled_waste_percent: float,
|
| 92 |
+
annual_travel_kms: float,
|
| 93 |
+
fuel_efficiency: float,
|
| 94 |
+
) -> tuple[str, gr.Button]:
|
| 95 |
+
"""
|
| 96 |
+
Compute carbon footprint with comprehensive input validation
|
| 97 |
+
Returns:
|
| 98 |
+
result (tuple)
|
| 99 |
+
of summary HTML (str)
|
| 100 |
+
and download_report button (Button)
|
| 101 |
+
"""
|
| 102 |
+
# Validate inputs first
|
| 103 |
+
validate_input(
|
| 104 |
+
company_name,
|
| 105 |
+
avg_electric_bill,
|
| 106 |
+
avg_gas_bill,
|
| 107 |
+
avg_transport_cost,
|
| 108 |
+
monthly_waste_generated,
|
| 109 |
+
recycled_waste_percent,
|
| 110 |
+
annual_travel_kms,
|
| 111 |
+
fuel_efficiency,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Proceed with calculation if validation passes
|
| 115 |
+
df = ec.make_dataframe(
|
| 116 |
+
company_name=company_name,
|
| 117 |
+
avg_electric_bill=avg_electric_bill,
|
| 118 |
+
avg_gas_bill=avg_gas_bill,
|
| 119 |
+
avg_transport_bill=avg_transport_cost,
|
| 120 |
+
monthly_waste_generated=monthly_waste_generated,
|
| 121 |
+
recycled_waste_percent=recycled_waste_percent,
|
| 122 |
+
annual_travel_kms=annual_travel_kms,
|
| 123 |
+
fuel_efficiency=fuel_efficiency,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
df_dump = ec.dataframe_to_dict(df=df)
|
| 128 |
+
with open(DATA_PATH, mode="a") as f:
|
| 129 |
+
w = DictWriter(f, fieldnames=df_dump.keys())
|
| 130 |
+
if not os_path.exists(DATA_PATH):
|
| 131 |
+
w.writeheader()
|
| 132 |
+
w.writerow(df_dump)
|
| 133 |
+
print("Saving is successful")
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(e)
|
| 136 |
+
|
| 137 |
+
plot = ec.draw_report_figure(df)
|
| 138 |
+
|
| 139 |
+
# Convert plot to base64 image
|
| 140 |
+
img_data = base64.b64encode(
|
| 141 |
+
plot.to_image(width=1400, height=800, format="png")
|
| 142 |
+
).decode("utf-8")
|
| 143 |
+
|
| 144 |
+
# convert plot to pdf for downloading report
|
| 145 |
+
file_path = f"./reports/{company_name.lower().replace(' ', '_')[:10]}_report.pdf"
|
| 146 |
+
plot.write_image(file_path, width=1400, height=800)
|
| 147 |
+
|
| 148 |
+
# Generate a summary HTML with embedded image
|
| 149 |
+
summary = f"""
|
| 150 |
+
<div style="max-width: 1400px; margin: 0 auto; font-family: Arial, sans-serif;">
|
| 151 |
+
<h3 style="color: #ffffff;"> Carbon Footprint Summary for {company_name} </h3>
|
| 152 |
+
<ul style="color: #666;">
|
| 153 |
+
<li>🏭 <strong>Total Carbon Impact</strong>: Calculated based on your inputs</li>
|
| 154 |
+
<li>💡 <strong>Energy Consumption</strong>: €{avg_electric_bill + avg_gas_bill:.2f}</li>
|
| 155 |
+
<li>🚗 <strong>Transportation Emissions</strong>: {annual_travel_kms} km</li>
|
| 156 |
+
<li>🗑️ <strong>Waste Management</strong>: {monthly_waste_generated} kg (Recycled: {recycled_waste_percent}%)</li>
|
| 157 |
+
</ul>
|
| 158 |
+
<img src="data:image/png;base64,{img_data}" style="max-width: 100%; height: auto;" alt="Carbon Footprint Report"/>
|
| 159 |
+
</div>
|
| 160 |
+
"""
|
| 161 |
+
download_button = gr.DownloadButton(
|
| 162 |
+
"Download Report", variant="secondary", visible=True, value=file_path
|
| 163 |
+
)
|
| 164 |
+
return summary, download_button
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def create_carbon_footprint_app() -> gr.Blocks:
|
| 168 |
+
with gr.Blocks(theme="soft") as demo:
|
| 169 |
+
with gr.Tab("Calculator 📱"):
|
| 170 |
+
gr.Markdown("# 🌍 Carbon Footprint Calculator")
|
| 171 |
+
|
| 172 |
+
# Hidden image download button
|
| 173 |
+
download_button = gr.File(
|
| 174 |
+
label="Download Carbon Footprint Report", type="binary", visible=False
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
with gr.Column():
|
| 178 |
+
with gr.Column(scale=2):
|
| 179 |
+
with gr.Column(variant="compact"):
|
| 180 |
+
company_name = gr.Textbox(
|
| 181 |
+
label="Company Name",
|
| 182 |
+
placeholder="Enter your company name",
|
| 183 |
+
info="Required: Full legal company name",
|
| 184 |
+
)
|
| 185 |
+
with gr.Row():
|
| 186 |
+
with gr.Column(variant="compact"):
|
| 187 |
+
avg_electric_bill = gr.Number(
|
| 188 |
+
value=1.0,
|
| 189 |
+
label="Average Electricity Bill (€)",
|
| 190 |
+
minimum=0.01,
|
| 191 |
+
info="Monthly electricity expenses",
|
| 192 |
+
)
|
| 193 |
+
avg_gas_bill = gr.Number(
|
| 194 |
+
value=1.0,
|
| 195 |
+
label="Average Gas Bill (€)",
|
| 196 |
+
minimum=0.01,
|
| 197 |
+
info="Monthly natural gas expenses",
|
| 198 |
+
)
|
| 199 |
+
avg_transport_cost = gr.Number(
|
| 200 |
+
value=1.0,
|
| 201 |
+
label="Average Transport Cost (€)",
|
| 202 |
+
info="Monthly Fuel bill for transport",
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
with gr.Column(variant="compact"):
|
| 206 |
+
annual_travel_kms = gr.Number(
|
| 207 |
+
value=1.0,
|
| 208 |
+
label="Annual Business Travel (km)",
|
| 209 |
+
minimum=0.01,
|
| 210 |
+
info="Total kilometers traveled by employees",
|
| 211 |
+
)
|
| 212 |
+
fuel_efficiency = gr.Number(
|
| 213 |
+
value=1.0,
|
| 214 |
+
label="Vehicle Fuel Efficiency (L/100 km)",
|
| 215 |
+
minimum=0.01,
|
| 216 |
+
info="Average fleet fuel consumption",
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
with gr.Column(variant="compact"):
|
| 220 |
+
monthly_waste_generated = gr.Number(
|
| 221 |
+
value=1.0,
|
| 222 |
+
label="Monthly Waste Generated (kg)",
|
| 223 |
+
minimum=0.01,
|
| 224 |
+
info="Total waste produced monthly",
|
| 225 |
+
)
|
| 226 |
+
recycled_waste_percent = gr.Number(
|
| 227 |
+
value=0.0,
|
| 228 |
+
label="Recycled Waste (%)",
|
| 229 |
+
minimum=0.0,
|
| 230 |
+
maximum=100.0,
|
| 231 |
+
info="Percentage of waste recycled",
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
with gr.Column(scale=1):
|
| 235 |
+
output_plot = gr.HTML(label="Carbon Footprint Report")
|
| 236 |
+
# Create a row for buttons
|
| 237 |
+
with gr.Row():
|
| 238 |
+
submit_button = gr.Button("Generate Report", variant="primary")
|
| 239 |
+
download_button = gr.DownloadButton(
|
| 240 |
+
"Download Report", variant="secondary", visible=False
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
submit_button.click(
|
| 244 |
+
fn=compute,
|
| 245 |
+
inputs=[
|
| 246 |
+
company_name,
|
| 247 |
+
avg_electric_bill,
|
| 248 |
+
avg_gas_bill,
|
| 249 |
+
avg_transport_cost,
|
| 250 |
+
monthly_waste_generated,
|
| 251 |
+
recycled_waste_percent,
|
| 252 |
+
annual_travel_kms,
|
| 253 |
+
fuel_efficiency,
|
| 254 |
+
],
|
| 255 |
+
outputs=[output_plot, download_button],
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
with gr.Tab("History 📊") as historic_tab:
|
| 259 |
+
gr.Markdown("# Historic Company Data")
|
| 260 |
+
|
| 261 |
+
plot = gr.Plot(value=compute_history(), label="Historic Data")
|
| 262 |
+
refresh = gr.Button("Refresh", variant="secondary")
|
| 263 |
+
refresh.click(
|
| 264 |
+
fn=compute_history,
|
| 265 |
+
outputs=[plot],
|
| 266 |
+
)
|
| 267 |
+
# auto-reload
|
| 268 |
+
historic_tab.select(
|
| 269 |
+
fn=compute_history,
|
| 270 |
+
outputs=[plot],
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
return demo
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
create_carbon_footprint_app().launch()
|
src/emission_calculator/calculator.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pandas import DataFrame
|
| 2 |
+
|
| 3 |
+
from plotly.subplots import make_subplots
|
| 4 |
+
from plotly.graph_objects import Figure, Pie, Bar, Scatter
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def draw_report_figure(df: DataFrame) -> Figure:
|
| 8 |
+
figure_specs = [
|
| 9 |
+
[{"type": "xy"}, {"type": "xy"}],
|
| 10 |
+
[{"type": "domain"}, None],
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
fig = make_subplots(
|
| 14 |
+
rows=2,
|
| 15 |
+
cols=2,
|
| 16 |
+
specs=figure_specs,
|
| 17 |
+
subplot_titles=(
|
| 18 |
+
"Carbon Emission by Category",
|
| 19 |
+
"Cumulative Emission %",
|
| 20 |
+
"Emission Distribution",
|
| 21 |
+
),
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Pie chart settings
|
| 25 |
+
pie_pull = [0.15 if x == min(df["Value"]) else 0.0 for x in df["Value"]]
|
| 26 |
+
fig.add_trace(
|
| 27 |
+
Pie(
|
| 28 |
+
values=df["Value"],
|
| 29 |
+
labels=df["Category"],
|
| 30 |
+
hole=0.3,
|
| 31 |
+
pull=pie_pull,
|
| 32 |
+
name="Emission Distribution",
|
| 33 |
+
marker={"colors": ["#6DA34D", "#81C3D7", "#FFC857"]},
|
| 34 |
+
),
|
| 35 |
+
row=2,
|
| 36 |
+
col=1,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Bar chart for emissions by category
|
| 40 |
+
fig.add_trace(
|
| 41 |
+
Bar(
|
| 42 |
+
x=df["Category"],
|
| 43 |
+
y=df["Value"],
|
| 44 |
+
name="Carbon Emission (kgCO2)",
|
| 45 |
+
marker_color=["#6DA34D", "#81C3D7", "#FFC857"],
|
| 46 |
+
),
|
| 47 |
+
row=1,
|
| 48 |
+
col=1,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Annotation for highest emission
|
| 52 |
+
fig.add_annotation(
|
| 53 |
+
x=df["Category"][df["Value"].idxmax()],
|
| 54 |
+
y=df["Value"].max(),
|
| 55 |
+
text="Highest Emission",
|
| 56 |
+
showarrow=True,
|
| 57 |
+
arrowhead=1,
|
| 58 |
+
ax=0,
|
| 59 |
+
ay=-40,
|
| 60 |
+
row=1,
|
| 61 |
+
col=1,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Cumulative line chart
|
| 65 |
+
cumulative_percentage = (df["Value"].cumsum() / df["Value"].sum()) * 100
|
| 66 |
+
fig.add_trace(
|
| 67 |
+
Scatter(
|
| 68 |
+
x=df["Category"],
|
| 69 |
+
y=cumulative_percentage,
|
| 70 |
+
name="Cumulative %",
|
| 71 |
+
mode="lines+markers",
|
| 72 |
+
line=dict(color="#333333", dash="dash"),
|
| 73 |
+
),
|
| 74 |
+
row=1,
|
| 75 |
+
col=2,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Update layout for axes and overall layout
|
| 79 |
+
fig.update_layout(
|
| 80 |
+
title_text=f"Carbon Footprint of {df['Name'][0]}",
|
| 81 |
+
plot_bgcolor="white",
|
| 82 |
+
legend_title_text="Breakdown",
|
| 83 |
+
xaxis_title="Emission Category",
|
| 84 |
+
yaxis_title="Carbon Emission (kgCO2)",
|
| 85 |
+
yaxis=dict(
|
| 86 |
+
linecolor="black",
|
| 87 |
+
showline=True,
|
| 88 |
+
ticks="outside",
|
| 89 |
+
mirror=True,
|
| 90 |
+
gridcolor="lightgrey",
|
| 91 |
+
),
|
| 92 |
+
yaxis2=dict(
|
| 93 |
+
title="Cumulative Percentage",
|
| 94 |
+
side="right",
|
| 95 |
+
showgrid=False,
|
| 96 |
+
),
|
| 97 |
+
legend=dict(
|
| 98 |
+
x=1, # Horizontal position (1 for right)
|
| 99 |
+
y=0, # Vertical position (0 for bottom)
|
| 100 |
+
xanchor="right",
|
| 101 |
+
yanchor="bottom",
|
| 102 |
+
orientation="h", # Horizontal layout for compactness
|
| 103 |
+
),
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
fig.update_xaxes(
|
| 107 |
+
linecolor="black",
|
| 108 |
+
ticks="outside",
|
| 109 |
+
showline=True,
|
| 110 |
+
mirror=True,
|
| 111 |
+
)
|
| 112 |
+
fig.update_yaxes(
|
| 113 |
+
linecolor="black",
|
| 114 |
+
showline=True,
|
| 115 |
+
ticks="outside",
|
| 116 |
+
mirror=True,
|
| 117 |
+
gridcolor="lightgrey",
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return fig
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def draw_historic_figure(df: DataFrame) -> Figure:
|
| 124 |
+
# Create subplots with 2 rows and 2 columns
|
| 125 |
+
fig = make_subplots(
|
| 126 |
+
rows=2,
|
| 127 |
+
cols=2,
|
| 128 |
+
subplot_titles=(
|
| 129 |
+
"Energy Usage by Company",
|
| 130 |
+
"Waste Generated by Company",
|
| 131 |
+
"Business Travel by Company",
|
| 132 |
+
"Total Carbon Footprint by Company",
|
| 133 |
+
),
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Add gradient-filled area traces for each metric
|
| 137 |
+
fig.add_trace(
|
| 138 |
+
Scatter(
|
| 139 |
+
x=df["Name"],
|
| 140 |
+
y=df["Energy Usage"],
|
| 141 |
+
mode="lines",
|
| 142 |
+
fill="tozeroy",
|
| 143 |
+
line=dict(color="blue"),
|
| 144 |
+
fillcolor="rgba(31, 119, 180, 0.5)", # Gradient fill for blue
|
| 145 |
+
name="Energy Usage",
|
| 146 |
+
),
|
| 147 |
+
row=1,
|
| 148 |
+
col=1,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
fig.add_trace(
|
| 152 |
+
Scatter(
|
| 153 |
+
x=df["Name"],
|
| 154 |
+
y=df["Waste Generated"],
|
| 155 |
+
mode="lines",
|
| 156 |
+
fill="tozeroy",
|
| 157 |
+
line=dict(color="orange"),
|
| 158 |
+
fillcolor="rgba(255, 127, 14, 0.5)", # Gradient fill for orange
|
| 159 |
+
name="Waste Generated",
|
| 160 |
+
),
|
| 161 |
+
row=1,
|
| 162 |
+
col=2,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
fig.add_trace(
|
| 166 |
+
Scatter(
|
| 167 |
+
x=df["Name"],
|
| 168 |
+
y=df["Business Travel"],
|
| 169 |
+
mode="lines",
|
| 170 |
+
fill="tozeroy",
|
| 171 |
+
line=dict(color="green"),
|
| 172 |
+
fillcolor="rgba(44, 160, 44, 0.5)", # Gradient fill for green
|
| 173 |
+
name="Business Travel",
|
| 174 |
+
),
|
| 175 |
+
row=2,
|
| 176 |
+
col=1,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# Calculate each company's total carbon footprint as the sum of the three metrics
|
| 180 |
+
df["Carbon Footprint"] = (
|
| 181 |
+
df["Energy Usage"] + df["Waste Generated"] + df["Business Travel"]
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Add a line trace for the total sum of each metric
|
| 185 |
+
fig.add_trace(
|
| 186 |
+
Scatter(
|
| 187 |
+
x=df["Name"],
|
| 188 |
+
y=df["Carbon Footprint"],
|
| 189 |
+
mode="lines+markers",
|
| 190 |
+
line=dict(color="black", dash="dash"),
|
| 191 |
+
name="Total Carbon Footprint",
|
| 192 |
+
),
|
| 193 |
+
row=2,
|
| 194 |
+
col=2,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Update layout for titles, legends, and aesthetics
|
| 198 |
+
fig.update_layout(
|
| 199 |
+
title="Company Metrics with Total Carbon Footprint",
|
| 200 |
+
barmode="group", # Group bars by category
|
| 201 |
+
template="plotly_white",
|
| 202 |
+
showlegend=True,
|
| 203 |
+
height=600,
|
| 204 |
+
width=1000,
|
| 205 |
+
legend=dict(x=1.05, y=1), # Adjust legend position outside plot for clarity
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Add axis labels to each subplot
|
| 209 |
+
fig.update_xaxes(title_text="Company", row=1, col=1)
|
| 210 |
+
fig.update_yaxes(title_text="Energy Usage", row=1, col=1)
|
| 211 |
+
|
| 212 |
+
fig.update_xaxes(title_text="Company", row=1, col=2)
|
| 213 |
+
fig.update_yaxes(title_text="Waste Generated", row=1, col=2)
|
| 214 |
+
|
| 215 |
+
fig.update_xaxes(title_text="Company", row=2, col=1)
|
| 216 |
+
fig.update_yaxes(title_text="Business Travel", row=2, col=1)
|
| 217 |
+
|
| 218 |
+
fig.update_xaxes(title_text="Company", row=2, col=2)
|
| 219 |
+
fig.update_yaxes(title_text="Carbon Footprint (total)", row=2, col=2)
|
| 220 |
+
|
| 221 |
+
return fig
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def make_dataframe(
|
| 225 |
+
company_name: str,
|
| 226 |
+
avg_electric_bill: float,
|
| 227 |
+
avg_gas_bill: float,
|
| 228 |
+
avg_transport_bill: float,
|
| 229 |
+
monthly_waste_generated: float,
|
| 230 |
+
recycled_waste_percent: float,
|
| 231 |
+
annual_travel_kms: float,
|
| 232 |
+
fuel_efficiency: float,
|
| 233 |
+
) -> DataFrame:
|
| 234 |
+
energy_usage = (
|
| 235 |
+
(avg_electric_bill * 12 * 5e-4)
|
| 236 |
+
+ (avg_gas_bill * 12 * 5.3e-3)
|
| 237 |
+
+ (avg_transport_bill * 12 * 2.32)
|
| 238 |
+
)
|
| 239 |
+
waste_generated = monthly_waste_generated * 12 * 0.57 - recycled_waste_percent
|
| 240 |
+
business_travel = annual_travel_kms * 1 / fuel_efficiency * 2.31
|
| 241 |
+
|
| 242 |
+
return DataFrame(
|
| 243 |
+
{
|
| 244 |
+
"Name": company_name,
|
| 245 |
+
"Category": ["Energy Usage", "Waste Generated", "Business Travel"],
|
| 246 |
+
"Value": [energy_usage, waste_generated, business_travel],
|
| 247 |
+
}
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def dataframe_to_dict(df: DataFrame) -> dict:
|
| 252 |
+
return {
|
| 253 |
+
"Name": df["Name"][0],
|
| 254 |
+
"Energy Usage": df["Value"][0],
|
| 255 |
+
"Waste Generated": df["Value"][1],
|
| 256 |
+
"Business Travel": df["Value"][2],
|
| 257 |
+
}
|
src/rep
ADDED
|
File without changes
|