File size: 1,697 Bytes
423dd52
d49bbe2
423dd52
 
 
d49bbe2
423dd52
 
d49bbe2
423dd52
 
d49bbe2
423dd52
 
d49bbe2
423dd52
 
 
 
 
 
 
d49bbe2
423dd52
 
 
 
 
 
d49bbe2
 
423dd52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49bbe2
423dd52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import gradio as gr
import torch
import deepspeed
from transformers import AutoTokenizer, AutoModelForCausalLM

# Retrieve your Hugging Face token from an environment variable.
hf_token = os.environ.get("hfaccesstoken")

# Set the correct model identifier.
model_name = "AI-Sweden-Models/gpt-sw3-6.7b"

# Load the tokenizer using your authentication token.
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)

# Load the model using offload_folder and device_map to manage GPU memory.
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    offload_folder="offload",
    use_auth_token=hf_token
)

# Wrap the model with DeepSpeed inference.
model = deepspeed.init_inference(
    model,
    mp_size=1,           # No model parallelism.
    dtype=torch.half,    # Use half precision to save memory.
    replace_method="auto"
)

def generate_text(prompt):
    # Tokenize the input and move to the correct device.
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    output = model.generate(
        **inputs,
        max_length=256,
        do_sample=True,
        top_p=0.9,
        temperature=0.7
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Create the Gradio interface.
demo = gr.Interface(
    fn=generate_text,
    inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."),
    outputs="text",
    title="GPT-SW3 6.7B with DeepSpeed Inference Offloading",
    description=(
        "This demo loads the GPT-SW3 6.7B model from AI-Sweden-Models using DeepSpeed inference offloading. "
        "Enter a prompt and see the model generate text."
    )
)

demo.launch()