Update classification.py
Browse files- classification.py +11 -10
classification.py
CHANGED
|
@@ -4,9 +4,9 @@ from tensorflow.keras.preprocessing import image
|
|
| 4 |
# from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 5 |
import tensorflow as tf
|
| 6 |
import streamlit as st
|
| 7 |
-
|
| 8 |
# Load the saved model
|
| 9 |
-
model = tf.keras.models.load_model('best_resnet152_model.h5')
|
| 10 |
|
| 11 |
class_names = {0: '1099_Div', 1: '1099_Int', 2: 'Non_Form', 3: 'w_2', 4: 'w_3'}
|
| 12 |
# print(class_names)
|
|
@@ -21,14 +21,15 @@ def predict(pil_img):
|
|
| 21 |
img_array /= 255.0 # Rescale pixel values
|
| 22 |
|
| 23 |
# Predict the class
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
# print("Execution time: ", end_time - start_time)
|
| 33 |
return predicted_class_name
|
| 34 |
# import numpy as np
|
|
|
|
| 4 |
# from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 5 |
import tensorflow as tf
|
| 6 |
import streamlit as st
|
| 7 |
+
with tf.device('/cpu:0'):
|
| 8 |
# Load the saved model
|
| 9 |
+
model = tf.keras.models.load_model('best_resnet152_model.h5')
|
| 10 |
|
| 11 |
class_names = {0: '1099_Div', 1: '1099_Int', 2: 'Non_Form', 3: 'w_2', 4: 'w_3'}
|
| 12 |
# print(class_names)
|
|
|
|
| 21 |
img_array /= 255.0 # Rescale pixel values
|
| 22 |
|
| 23 |
# Predict the class
|
| 24 |
+
with tf.device('/cpu:0'):
|
| 25 |
+
start_time = time.time()
|
| 26 |
+
predictions = model.predict(img_array)
|
| 27 |
+
end_time = time.time()
|
| 28 |
+
predicted_class_index = np.argmax(predictions, axis=1)[0]
|
| 29 |
+
|
| 30 |
+
# Get the predicted class name
|
| 31 |
+
predicted_class_name = class_names[predicted_class_index]
|
| 32 |
+
print("Predicted class:", predicted_class_name)
|
| 33 |
# print("Execution time: ", end_time - start_time)
|
| 34 |
return predicted_class_name
|
| 35 |
# import numpy as np
|