File size: 5,683 Bytes
4d6e8c2
 
 
 
 
32590b1
a66df45
 
 
 
 
4d6e8c2
 
 
 
a66df45
 
 
4d6e8c2
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
847feee
caed752
a66df45
 
 
 
 
 
 
 
 
 
 
 
 
 
caed752
a66df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
5518620
4d6e8c2
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
5518620
 
4d6e8c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from transformers import pipeline, AutoConfig
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict
import numpy as np
import torch

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]
    config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit")
    label2id = config.label2id
    # classifier = pipeline(
    #         "text-classification",
    #         "camillebrl/ModernBERT-envclaims-overfit",
    #         device="cpu"
    #         )
    # print("len dataset : ", len(test_dataset["quote"]))
    # predictions = []
    # for batch in range(0, len(test_dataset["quote"]), 32):  # Ajustez la taille des batchs
    #     batch_quotes = test_dataset["quote"][batch:batch + 32]
    #     batch_predictions = classifier(batch_quotes)
    #     predictions.extend([label2id[pred["label"]] for pred in batch_predictions])
    #     print(predictions)
    # print("final predictions : ", predictions)
    # Initialize the model once
    classifier = pipeline(
        "text-classification",
        "camillebrl/ModernBERT-envclaims-overfit",
        device="cpu",  # Explicitly set device
        batch_size=16  # Set batch size for pipeline
    )

    # Prepare batches
    batch_size = 32
    quotes = test_dataset["quote"]
    num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
    batches = [
        quotes[i * batch_size:(i + 1) * batch_size]
        for i in range(num_batches)
    ]

    # Process batches in parallel
    max_workers = min(os.cpu_count(), 4)  # Limit to 4 workers or CPU count
    print(f"Processing with {max_workers} workers")
    
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        # Submit all batches for processing
        future_to_batch = {
            executor.submit(
                process_batch, 
                batch, 
                classifier, 
                label2id
            ): i for i, batch in enumerate(batches)
        }

        # Collect results in order
        batch_predictions = [[] for _ in range(len(batches))]
        for future in future_to_batch:
            batch_idx = future_to_batch[future]
            try:
                batch_predictions[batch_idx] = future.result()
            except Exception as e:
                print(f"Batch {batch_idx} generated an exception: {e}")
                batch_predictions[batch_idx] = []

        # Flatten predictions
        predictions = [pred for batch in batch_predictions for pred in batch]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    print("accuracy : ", accuracy)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }

    print("results : ", results)
    
    return results