Spaces:
Sleeping
Sleeping
File size: 5,683 Bytes
4d6e8c2 32590b1 a66df45 4d6e8c2 a66df45 4d6e8c2 70f5f26 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 76fccaf 4d6e8c2 70f5f26 4d6e8c2 847feee caed752 a66df45 caed752 a66df45 70f5f26 4d6e8c2 5518620 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 5518620 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from transformers import pipeline, AutoConfig
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict
import numpy as np
import torch
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit")
label2id = config.label2id
# classifier = pipeline(
# "text-classification",
# "camillebrl/ModernBERT-envclaims-overfit",
# device="cpu"
# )
# print("len dataset : ", len(test_dataset["quote"]))
# predictions = []
# for batch in range(0, len(test_dataset["quote"]), 32): # Ajustez la taille des batchs
# batch_quotes = test_dataset["quote"][batch:batch + 32]
# batch_predictions = classifier(batch_quotes)
# predictions.extend([label2id[pred["label"]] for pred in batch_predictions])
# print(predictions)
# print("final predictions : ", predictions)
# Initialize the model once
classifier = pipeline(
"text-classification",
"camillebrl/ModernBERT-envclaims-overfit",
device="cpu", # Explicitly set device
batch_size=16 # Set batch size for pipeline
)
# Prepare batches
batch_size = 32
quotes = test_dataset["quote"]
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
batches = [
quotes[i * batch_size:(i + 1) * batch_size]
for i in range(num_batches)
]
# Process batches in parallel
max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count
print(f"Processing with {max_workers} workers")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all batches for processing
future_to_batch = {
executor.submit(
process_batch,
batch,
classifier,
label2id
): i for i, batch in enumerate(batches)
}
# Collect results in order
batch_predictions = [[] for _ in range(len(batches))]
for future in future_to_batch:
batch_idx = future_to_batch[future]
try:
batch_predictions[batch_idx] = future.result()
except Exception as e:
print(f"Batch {batch_idx} generated an exception: {e}")
batch_predictions[batch_idx] = []
# Flatten predictions
predictions = [pred for batch in batch_predictions for pred in batch]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print("accuracy : ", accuracy)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print("results : ", results)
return results |