from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from transformers import pipeline, AutoConfig import os from concurrent.futures import ThreadPoolExecutor from typing import List, Dict import numpy as np import torch from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info # Disable torch compile os.environ["TORCH_COMPILE_DISABLE"] = "1" router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"] test_dataset = dataset["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit") label2id = config.label2id # classifier = pipeline( # "text-classification", # "camillebrl/ModernBERT-envclaims-overfit", # device="cpu" # ) # print("len dataset : ", len(test_dataset["quote"])) # predictions = [] # for batch in range(0, len(test_dataset["quote"]), 32): # Ajustez la taille des batchs # batch_quotes = test_dataset["quote"][batch:batch + 32] # batch_predictions = classifier(batch_quotes) # predictions.extend([label2id[pred["label"]] for pred in batch_predictions]) # print(predictions) # print("final predictions : ", predictions) # Initialize the model once classifier = pipeline( "text-classification", "camillebrl/ModernBERT-envclaims-overfit", device="cpu", # Explicitly set device batch_size=16 # Set batch size for pipeline ) # Prepare batches batch_size = 32 quotes = test_dataset["quote"] num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0) batches = [ quotes[i * batch_size:(i + 1) * batch_size] for i in range(num_batches) ] # Process batches in parallel max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count print(f"Processing with {max_workers} workers") with ThreadPoolExecutor(max_workers=max_workers) as executor: # Submit all batches for processing future_to_batch = { executor.submit( process_batch, batch, classifier, label2id ): i for i, batch in enumerate(batches) } # Collect results in order batch_predictions = [[] for _ in range(len(batches))] for future in future_to_batch: batch_idx = future_to_batch[future] try: batch_predictions[batch_idx] = future.result() except Exception as e: print(f"Batch {batch_idx} generated an exception: {e}") batch_predictions[batch_idx] = [] # Flatten predictions predictions = [pred for batch in batch_predictions for pred in batch] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) print("accuracy : ", accuracy) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } print("results : ", results) return results