Spaces:
Build error
Build error
### ----------------------------------------------------------------------- | |
### (FULL, Revised) version_1.07ALPHA_app.py | |
### ----------------------------------------------------------------------- | |
# ------------------------------------------------------------------------- | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------- | |
import spaces | |
import gradio as gr | |
from PIL import Image | |
#from pydub import AudioSegment | |
#from scipy.io import wavfile | |
import os | |
import re | |
import time | |
import warnings | |
#import datetime | |
#import pandas as pd | |
#import csv | |
import subprocess | |
from pathlib import Path | |
import tempfile | |
from fpdf import FPDF | |
import psutil | |
from gpuinfo import GPUInfo | |
#import numpy as np | |
import torch | |
#import torchaudio | |
#import torchaudio.transforms as transforms | |
from transformers import pipeline #AutoModel | |
#import spacy | |
#import networkx as nx | |
#from sklearn.feature_extraction.text import TfidfVectorizer | |
#from sklearn.metrics.pairwise import cosine_similarity | |
warnings.filterwarnings("ignore") | |
# ------------header section------------ | |
HEADER_INFO = """ | |
# WEB APP ✨| Norwegian WHISPER Model | |
Switch Work [Transkribering av lydfiler til norsk skrift] | |
""".strip() | |
LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1724881270&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNDg4MTI3MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=ipo8wTjtC7R0QHbo%7Et9Q5CTaI3cZKxM0beajqlApfm5fh7%7EW-FULu1-ISL5bkowBSw9m5RdGoyOqj336OSS5fPD%7EnzYNmAMd3T5bx2-KfCDh6jz0HVECt8S7HeIu%7El2TetxrzL2tdHw4Np4Zpa8JKOnNnje24fF0Nr-xUS2dvPJf54rIL70-iWVXXhw8owxt0%7E1CJsUHC9oibp9B4mZcyWvvRldhDopiQBYELusZdTW3qvtTBK083WP3gHQxadQp8UDVTPZ0g3i112G2NfFJB%7Epa70XeN8m3E6ORx6pVH%7EW6IzjvmapWSF-tmXH-26wYG8aof%7E1U7enbR1w2QBTS-g__&Key-Pair-Id=K24J24Z295AEI9" | |
SIDEBAR_INFO = f""" | |
<div align="center"> | |
<img src="{LOGO}" style="width: 100%; height: auto;"/> | |
</div> | |
""" | |
# ------------transcribe section------------ | |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'}) | |
def transcribe(microphone, file_upload, batch_size=15): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
start_time = time.time() | |
text = pipe(file, batch_size=batch_size, return_timestamps=False)["text"] | |
end_time = time.time() | |
output_time = end_time - start_time | |
word_count = len(text.split()) | |
# --GPU metrics | |
memory = psutil.virtual_memory() | |
gpu_utilization, gpu_memory = GPUInfo.gpu_usage() | |
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 | |
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 | |
# --CPU metric | |
cpu_usage = psutil.cpu_percent(interval=1) | |
# --system info string | |
system_info = f""" | |
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* | |
*Processing time: {output_time:.2f} seconds.* | |
*Number of words: {word_count}* | |
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}* | |
*CPU Usage: {cpu_usage}%* | |
""" | |
return warn_output + text.strip(), system_info | |
def save_to_pdf(text, summary): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
# | |
# ----add same if/elif logic as above here---- | |
# | |
if text: | |
pdf.multi_cell(0, 10, "Text:\n" + text) | |
pdf.ln(10) # Paragraph metric | |
if summary: | |
pdf.multi_cell(0, 10, "Summary:\n" + summary) | |
pdf_output_path = "transcription_.pdf" | |
pdf.output(pdf_output_path) | |
return pdf_output_path | |
iface = gr.Blocks() | |
with iface: | |
gr.HTML(SIDEBAR_INFO) | |
gr.Markdown(HEADER_INFO) | |
with gr.Row(): | |
gr.Markdown(''' | |
##### Here you will get transcription output | |
##### ''') | |
microphone = gr.Audio(sources="microphone", type="filepath") | |
upload = gr.Audio(sources="upload", type="filepath") | |
transcribe_btn = gr.Button("Transcribe Interview") | |
text_output = gr.Textbox() | |
system_info = gr.Textbox(label="System Info") | |
transcribe_btn.click(fn=transcribe, inputs=[microphone, upload], outputs=[text_output, system_info]) | |
with gr.Tabs(): | |
with gr.TabItem("Download PDF"): | |
pdf_text_only = gr.Button("Download PDF with Transcribed Text") | |
pdf_output = gr.File(label="Download PDF") | |
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output]) |