Spaces:
Build error
Build error
""" | |
This application processes audio files, transcribes them using a pretrained model (Whisper), and provides multiple summarization options for the transcribed text. The application also includes a PDF generation feature and is built with Gradio for the user interface | |
Webapp, transkribering (norsk), NbAiLab/nb-whisper-large, oppsummering, pdf-download. | |
""" | |
import time | |
import os | |
import warnings | |
from pydub import AudioSegment | |
import torch | |
from torch import torchaudio | |
from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor | |
from huggingface_hub import model_info | |
import nltk | |
from nltk.tokenize import word_tokenize | |
from nltk.corpus import stopwords | |
import networkx as nx | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import pandas as pd | |
import numpy as np | |
import re | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
from fpdf import FPDF | |
from PIL import Image | |
# Suppress warnings | |
warnings.filterwarnings("ignore") | |
# Ascertain that NLTK dependencies for Norwegian are downloaded | |
nltk.download('punkt', quiet=True) | |
nltk.download('stopwords', quiet=True) | |
stop_words = set(stopwords.words('norwegian')) | |
# Convert m4a audio to wav format | |
def convert_to_wav(audio_file): | |
audio = AudioSegment.from_file(audio_file, format="m4a") | |
wav_file = "temp.wav" | |
audio.export(wav_file, format="wav") | |
return wav_file | |
# Initialize device for torch | |
#device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load smoking-big-pipe | |
MODEL_NAME = "NbAiLab/nb-whisper-large" | |
lang = "no" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
def transcribe_audio(audio_file): | |
if audio_file.endswith(".m4a"): | |
audio_file = convert_to_wav(audio_file) | |
start_time = time.time() | |
text = pipe(audio_file)["text"] | |
# Load the audio file using torchaudio | |
#waveform, sample_rate = torchaudio.load(audio_file) | |
# Process the waveform with Whisper's processor | |
#input_features = whisper_processor(waveform, sampling_rate=sample_rate, return_tensors="pt").input_features.to(device) | |
# Generate the transcription | |
#output = whisper_model.generate(input_features=input_features) | |
# Decode the output | |
#text = whisper_processor.batch_decode(output, skip_special_tokens=True)[0] | |
output_time = time.time() - start_time | |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {len(text.split())}" | |
return text, result | |
# Clean and preprocess text for summarization | |
def clean_text(text): | |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) | |
text = re.sub(r'[^\w\s]', '', text) | |
text = re.sub(r'\s+', ' ', text).strip() | |
return text | |
def preprocess_text(text): | |
words = word_tokenize(text, language="norwegian") | |
stop_words = set(stopwords.words('norwegian')) | |
words = [word for word in words if word.lower() not in stop_words] | |
return ' '.join(words) | |
# Summarize text using the T5 model | |
def summarize_text(text): | |
preprocessed_text = preprocess_text(text) | |
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True) | |
inputs = inputs.to(device) | |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True) | |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Build similarity matrix for graph-based summary | |
def build_similarity_matrix(sentences, stop_words): | |
similarity_matrix = nx.Graph() | |
for i, tokens_a in enumerate(sentences): | |
for j, tokens_b in enumerate(sentences): | |
if i != j: | |
common_words = set(tokens_a) & set(tokens_b) | |
similarity_matrix.add_edge(i, j, weight=len(common_words)) | |
return similarity_matrix | |
# Graph-based summarization | |
def graph_based_summary(text, num_paragraphs=3): | |
sentences = nltk.sent_tokenize(text) | |
if len(sentences) < num_paragraphs: | |
return sentences | |
sentence_tokens = [word_tokenize(sent) for sent in sentences] | |
stop_words = set(stopwords.words('norwegian')) | |
filtered_tokens = [[word for word in tokens if word.lower() not in stop_words] for tokens in sentence_tokens] | |
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words) | |
scores = nx.pagerank(similarity_matrix) | |
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True) | |
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]]) | |
# LexRank summarization | |
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1): | |
sentences = nltk.sent_tokenize(text) | |
if len(sentences) < num_paragraphs: | |
return sentences | |
stop_words = set(stopwords.words('norwegian')) | |
vectorizer = TfidfVectorizer(stop_words=list(stop_words)) | |
X = vectorizer.fit_transform(sentences) | |
similarity_matrix = cosine_similarity(X, X) | |
# Apply threshold to the similarity matrix | |
similarity_matrix[similarity_matrix < threshold] = 0 | |
nx_graph = nx.from_numpy_array(similarity_matrix) | |
scores = nx.pagerank(nx_graph) | |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) | |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)]) | |
# TextRank summarization | |
def text_rank_summary(text, num_paragraphs=3): | |
sentences = nltk.sent_tokenize(text) | |
if len(sentences) < num_paragraphs: | |
return sentences | |
stop_words = set(stopwords.words('norwegian')) | |
vectorizer = TfidfVectorizer(stop_words=list(stop_words)) | |
X = vectorizer.fit_transform(sentences) | |
similarity_matrix = cosine_similarity(X, X) | |
nx_graph = nx.from_numpy_array(similarity_matrix) | |
scores = nx.pagerank(nx_graph) | |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) | |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)]) | |
# Save text and summary to PDF | |
def save_to_pdf(text, summary): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
if text: | |
pdf.multi_cell(0, 10, "Text:\n" + text) | |
pdf.ln(10) # Paragraph space | |
if summary: | |
pdf.multi_cell(0, 10, "Summary:\n" + summary) | |
pdf_output_path = "transcription.pdf" | |
pdf.output(pdf_output_path) | |
return pdf_output_path | |
# Gradio Interface | |
iface = gr.Blocks() | |
with iface: | |
gr.HTML(""" | |
<div style="text-align: center;"> | |
<img src="https://huggingface.co/spaces/camparchimedes/transcription_app/raw/main/banner_trans.png" alt="" width="100%" height="auto"> | |
</div> | |
""") | |
gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.") | |
with gr.Tabs(): | |
with gr.TabItem("Transcription"): | |
audio_input = gr.Audio(type="filepath") | |
text_output = gr.Textbox(label="Text") | |
result_output = gr.Textbox(label="Time taken and Number of words") | |
transcribe_button = gr.Button("Transcribe") | |
transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output]) | |
with gr.TabItem("Summary | Graph-based"): | |
summary_output = gr.Textbox(label="Summary | Graph-based") | |
summarize_button = gr.Button("Summarize") | |
summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output]) | |
with gr.TabItem("Summary | LexRank"): | |
summary_output = gr.Textbox(label="Summary | LexRank") | |
summarize_button = gr.Button("Summarize") | |
summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output]) | |
with gr.TabItem("Summary | TextRank"): | |
summary_output = gr.Textbox(label="Summary | TextRank") | |
summarize_button = gr.Button("Summarize") | |
summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output]) | |
with gr.TabItem("Download PDF"): | |
pdf_text_only = gr.Button("Download PDF with Text Only") | |
pdf_summary_only = gr.Button("Download PDF with Summary Only") | |
pdf_both = gr.Button("Download PDF with Both") | |
pdf_output = gr.File(label="Download PDF") | |
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output]) | |
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output]) | |
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output]) | |
iface.launch(share=True, debug=True) | |