Spaces:
Build error
Build error
# app.py | |
import gradio as gr | |
import warnings | |
import torch | |
from transformers import WhisperTokenizer, WhisperForConditionalGeneration, WhisperProcessor | |
import soundfile as sf | |
import ffmpeg | |
import os | |
from huggingface_hub import InferenceClient | |
from gradio_client import Client, file | |
import spaces | |
warnings.filterwarnings("ignore") | |
# Load tokenizer, model, and processor | |
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium") | |
model = WhisperForConditionalGeneration.from_pretrained("NbAiLabBeta/nb-whisper-medium") | |
processor = WhisperProcessor.from_pretrained("NbAiLabBeta/nb-whisper-medium") | |
# Set up device | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
torch_dtype = torch.float32 | |
# Move model to device | |
model.to(device) | |
def convert_audio_format(audio_path): | |
output_path = "converted_audio.wav" | |
ffmpeg.input(audio_path).output(output_path, format='wav', ar='16000').run(overwrite_output=True) | |
return output_path | |
def transcribe_audio(audio_file, batch_size=4): | |
audio_path = convert_audio_format(audio_file) | |
audio_input, sample_rate = sf.read(audio_path) | |
chunk_size = 16000 * 28 # 28 seconds chunks | |
chunks = [audio_input[i:i + chunk_size] for i in range(0, len(audio_input), chunk_size)] | |
transcription = "" | |
for i in range(0, len(chunks), batch_size): | |
batch_chunks = chunks[i:i + batch_size] | |
inputs = processor(batch_chunks, sampling_rate=16000, return_tensors="pt", padding=True) | |
inputs = inputs.to(device) | |
attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None | |
with torch.no_grad(): | |
output = model.generate( | |
inputs.input_features, | |
max_length=1024, | |
num_beams=7, | |
attention_mask=attention_mask | |
) | |
transcription += " ".join(processor.batch_decode(output, skip_special_tokens=True)) + " " | |
return transcription.strip() | |
# HTML | |
banner_html = """ | |
<div style="text-align: center;"> | |
<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/Olas%20AudioSwitch%20Shop.png" alt="Banner" width="87%" height="auto"> | |
</div> | |
<div style="text-align: center; margin-top: 20px;"> | |
<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/picture.jpg" alt="picture" width="50%" height="auto"> | |
</div> | |
""" | |
images_path = os.path.dirname(__file__) | |
IMAGES = [ | |
[ | |
{ | |
"text": "What usual stuff happens in this image? :)", | |
"files": [f"{images_path}/500x_picture.png"], | |
} | |
] | |
] | |
# Gradio interface | |
iface = gr.Blocks() | |
with iface: | |
gr.HTML(banner_html) | |
gr.Markdown("# ππ―π’ππ’π ππππ ππΌπΎπ¦Ύβ‘ @{NbAiLab/whisper-norwegian-medium}\nUpload audio file:β") | |
audio_input = gr.Audio(type="filepath") | |
batch_size_input = gr.Slider(minimum=1, maximum=16, step=1, label="Batch Size") | |
transcription_output = gr.Textbox() | |
transcribe_button = gr.Button("Transcribe") | |
transcribe_button.click(fn=transcribe_audio, inputs=[audio_input, batch_size_input], outputs=transcription_output) | |
# Launch interface | |
iface.launch(share=True, debug=True) | |