Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import time
|
3 |
import os
|
4 |
import spaces
|
@@ -19,26 +26,28 @@ from transformers import pipeline # AutoProcessor, AutoModelForSpeechSeq2Seq
|
|
19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
torch_dtype = torch.float32
|
21 |
|
22 |
-
|
23 |
|
24 |
-
@spaces.GPU(queue=True)
|
25 |
-
def transcribe_audio(audio_file):
|
26 |
if audio_file.endswith(".m4a"):
|
27 |
audio_file = convert_to_wav(audio_file)
|
28 |
|
29 |
start_time = time.time()
|
30 |
-
|
|
|
|
|
31 |
with torch.no_grad():
|
32 |
-
output =
|
33 |
|
34 |
-
|
35 |
end_time = time.time()
|
36 |
output_time = end_time - start_time
|
37 |
-
word_count = len(
|
38 |
|
39 |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {word_count}"
|
40 |
|
41 |
-
return
|
42 |
|
43 |
# [VERSION 3: full-on w/ 3 styles for summarization]
|
44 |
import nltk
|
@@ -56,11 +65,6 @@ nltk.download('stopwords')
|
|
56 |
|
57 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
58 |
|
59 |
-
def transcribe(audio_file):
|
60 |
-
transcription, result = transcribe_audio(audio_file)
|
61 |
-
text = transcription
|
62 |
-
return text, result
|
63 |
-
|
64 |
def clean_text(text):
|
65 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', str(text), flags=re.MULTILINE)
|
66 |
text = re.sub(r'\<a href', ' ', str(text))
|
@@ -96,7 +100,7 @@ summarization_model = AutoModelForSeq2SeqLM.from_pretrained("t5-base", return_di
|
|
96 |
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
97 |
summarization_model.to(device)
|
98 |
|
99 |
-
@spaces.GPU(queue=True)
|
100 |
def summarize_text(text):
|
101 |
preprocessed_text = preprocess_text(text)
|
102 |
if preprocessed_text is None:
|
@@ -174,13 +178,13 @@ import gradio as gr
|
|
174 |
from fpdf import FPDF
|
175 |
from PIL import Image
|
176 |
|
177 |
-
def save_to_pdf(
|
178 |
pdf = FPDF()
|
179 |
pdf.add_page()
|
180 |
pdf.set_font("Arial", size=12)
|
181 |
|
182 |
-
if
|
183 |
-
pdf.multi_cell(0, 10, "
|
184 |
|
185 |
# paragraph space
|
186 |
pdf.ln(10)
|
@@ -194,16 +198,16 @@ def save_to_pdf(transcription, summary):
|
|
194 |
|
195 |
banner_html = """
|
196 |
<div style="text-align: center;">
|
197 |
-
<img src="https://huggingface.co/spaces/camparchimedes/
|
198 |
</div>
|
199 |
"""
|
200 |
|
201 |
iface = gr.Interface(
|
202 |
fn=transcribe_audio,
|
203 |
inputs=gr.Audio(type="filepath"),
|
204 |
-
outputs="
|
205 |
title="SW Transcription App",
|
206 |
-
description="Upload an audio file to get the
|
207 |
theme="default",
|
208 |
live=False
|
209 |
)
|
@@ -218,17 +222,18 @@ with iface:
|
|
218 |
|
219 |
with gr.TabItem("Transcription"):
|
220 |
audio_input = gr.Audio(type="filepath")
|
221 |
-
|
222 |
result_output = gr.Textbox(label="Time taken and Number of words")
|
223 |
transcribe_button = gr.Button("Transcribe")
|
224 |
|
225 |
def transcribe(audio_file):
|
226 |
-
|
227 |
-
return
|
|
|
228 |
transcribe_button.click(
|
229 |
fn=transcribe,
|
230 |
inputs=[audio_input],
|
231 |
-
outputs=[
|
232 |
)
|
233 |
|
234 |
|
@@ -236,15 +241,15 @@ with iface:
|
|
236 |
summary_output = gr.Textbox(label="Summary | Graph-based")
|
237 |
summarize_button = gr.Button("Summarize")
|
238 |
|
239 |
-
def summarize(
|
240 |
-
if not
|
241 |
-
return "Warning: a
|
242 |
-
summary = graph_based_summary(
|
243 |
return summary
|
244 |
|
245 |
summarize_button.click(
|
246 |
fn=summarize,
|
247 |
-
inputs=[
|
248 |
outputs=summary_output
|
249 |
)
|
250 |
|
@@ -252,15 +257,15 @@ with iface:
|
|
252 |
summary_output = gr.Textbox(label="Summary | LexRank")
|
253 |
summarize_button = gr.Button("Summarize")
|
254 |
|
255 |
-
def summarize(
|
256 |
-
if not
|
257 |
-
return "Warning: a
|
258 |
-
summary = lex_rank_summary(
|
259 |
return summary
|
260 |
|
261 |
summarize_button.click(
|
262 |
fn=summarize,
|
263 |
-
inputs=[
|
264 |
outputs=summary_output
|
265 |
)
|
266 |
|
@@ -268,40 +273,40 @@ with iface:
|
|
268 |
summary_output = gr.Textbox(label="Summary | TextRank")
|
269 |
summarize_button = gr.Button("Summarize")
|
270 |
|
271 |
-
def summarize(
|
272 |
-
if not
|
273 |
-
return "Warning: a
|
274 |
-
summary = text_rank_summary(
|
275 |
return summary
|
276 |
|
277 |
summarize_button.click(
|
278 |
fn=summarize,
|
279 |
-
inputs=[
|
280 |
outputs=summary_output
|
281 |
)
|
282 |
|
283 |
with gr.TabItem("Download PDF"):
|
284 |
-
|
285 |
pdf_summary_only = gr.Button("Download PDF with Summary Only")
|
286 |
pdf_both = gr.Button("Download PDF with Both")
|
287 |
|
288 |
-
|
289 |
pdf_output_summary_only = gr.File(label="Download PDF")
|
290 |
pdf_output_both = gr.File(label="Download PDF")
|
291 |
|
292 |
-
def
|
293 |
-
return save_to_pdf(
|
294 |
|
295 |
def generate_pdf_summary_only(summary):
|
296 |
return save_to_pdf("", summary)
|
297 |
|
298 |
-
def generate_pdf_both(
|
299 |
-
return save_to_pdf(
|
300 |
|
301 |
-
|
302 |
-
fn=
|
303 |
-
inputs=[
|
304 |
-
outputs=[
|
305 |
)
|
306 |
|
307 |
pdf_summary_only.click(
|
@@ -312,9 +317,8 @@ with iface:
|
|
312 |
|
313 |
pdf_both.click(
|
314 |
fn=generate_pdf_both,
|
315 |
-
inputs=[
|
316 |
outputs=[pdf_output_both]
|
317 |
)
|
318 |
|
319 |
iface.launch(share=True, debug=True)
|
320 |
-
|
|
|
1 |
|
2 |
+
|
3 |
+
# -----------------COPY OF NEW EDITION[app.py]-----------------
|
4 |
+
|
5 |
+
# check if still the case...........??*********************************************
|
6 |
+
# "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
7 |
+
|
8 |
+
|
9 |
import time
|
10 |
import os
|
11 |
import spaces
|
|
|
26 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
27 |
torch_dtype = torch.float32
|
28 |
|
29 |
+
pipe = pipeline("automatic-speech-recognition", model="NbAiLabBeta/nb-whisper-large", device=device, torch_dtype=torch_dtype)
|
30 |
|
31 |
+
# @spaces.GPU(queue=True)
|
32 |
+
def transcribe_audio(audio_file, forced_decoder_ids):
|
33 |
if audio_file.endswith(".m4a"):
|
34 |
audio_file = convert_to_wav(audio_file)
|
35 |
|
36 |
start_time = time.time()
|
37 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
38 |
+
# check if still the case...........??*********************************************
|
39 |
+
# "You have passed task=transcribe, but also have set `forced_decoder_ids` to [[1, 50288], [2, 50360], [3, 50364]] which creates a conflict. `forced_decoder_ids` will be ignored in favor of task=transcribe."
|
40 |
with torch.no_grad():
|
41 |
+
output = pipe(audio_file, chunk_length_s=30, generate_kwargs={"forced_decoder_ids”: forced_decoder_ids}", "num_beams": 8, "language": "norwegian"}) # "task": "transcribe",
|
42 |
|
43 |
+
text = output["text"]
|
44 |
end_time = time.time()
|
45 |
output_time = end_time - start_time
|
46 |
+
word_count = len(text.split())
|
47 |
|
48 |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {word_count}"
|
49 |
|
50 |
+
return text, result
|
51 |
|
52 |
# [VERSION 3: full-on w/ 3 styles for summarization]
|
53 |
import nltk
|
|
|
65 |
|
66 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
def clean_text(text):
|
69 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', str(text), flags=re.MULTILINE)
|
70 |
text = re.sub(r'\<a href', ' ', str(text))
|
|
|
100 |
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
101 |
summarization_model.to(device)
|
102 |
|
103 |
+
# @spaces.GPU(queue=True)
|
104 |
def summarize_text(text):
|
105 |
preprocessed_text = preprocess_text(text)
|
106 |
if preprocessed_text is None:
|
|
|
178 |
from fpdf import FPDF
|
179 |
from PIL import Image
|
180 |
|
181 |
+
def save_to_pdf(text, summary):
|
182 |
pdf = FPDF()
|
183 |
pdf.add_page()
|
184 |
pdf.set_font("Arial", size=12)
|
185 |
|
186 |
+
if text:
|
187 |
+
pdf.multi_cell(0, 10, "text:\n" + text)
|
188 |
|
189 |
# paragraph space
|
190 |
pdf.ln(10)
|
|
|
198 |
|
199 |
banner_html = """
|
200 |
<div style="text-align: center;">
|
201 |
+
<img src="https://huggingface.co/spaces/camparchimedes/text_app/raw/main/picture.png" alt="Banner" width="100%" height="auto">
|
202 |
</div>
|
203 |
"""
|
204 |
|
205 |
iface = gr.Interface(
|
206 |
fn=transcribe_audio,
|
207 |
inputs=gr.Audio(type="filepath"),
|
208 |
+
outputs="transcription",
|
209 |
title="SW Transcription App",
|
210 |
+
description="Upload an audio file to get the text",
|
211 |
theme="default",
|
212 |
live=False
|
213 |
)
|
|
|
222 |
|
223 |
with gr.TabItem("Transcription"):
|
224 |
audio_input = gr.Audio(type="filepath")
|
225 |
+
text_output = gr.Textbox(label="text")
|
226 |
result_output = gr.Textbox(label="Time taken and Number of words")
|
227 |
transcribe_button = gr.Button("Transcribe")
|
228 |
|
229 |
def transcribe(audio_file):
|
230 |
+
text, result = transcribe_audio(audio_file)
|
231 |
+
return text, result
|
232 |
+
|
233 |
transcribe_button.click(
|
234 |
fn=transcribe,
|
235 |
inputs=[audio_input],
|
236 |
+
outputs=[text_output, result_output]
|
237 |
)
|
238 |
|
239 |
|
|
|
241 |
summary_output = gr.Textbox(label="Summary | Graph-based")
|
242 |
summarize_button = gr.Button("Summarize")
|
243 |
|
244 |
+
def summarize(text):
|
245 |
+
if not text:
|
246 |
+
return "Warning: a text must be available."
|
247 |
+
summary = graph_based_summary(text)
|
248 |
return summary
|
249 |
|
250 |
summarize_button.click(
|
251 |
fn=summarize,
|
252 |
+
inputs=[text_output],
|
253 |
outputs=summary_output
|
254 |
)
|
255 |
|
|
|
257 |
summary_output = gr.Textbox(label="Summary | LexRank")
|
258 |
summarize_button = gr.Button("Summarize")
|
259 |
|
260 |
+
def summarize(text):
|
261 |
+
if not text:
|
262 |
+
return "Warning: a text must be available."
|
263 |
+
summary = lex_rank_summary(text)
|
264 |
return summary
|
265 |
|
266 |
summarize_button.click(
|
267 |
fn=summarize,
|
268 |
+
inputs=[text_output],
|
269 |
outputs=summary_output
|
270 |
)
|
271 |
|
|
|
273 |
summary_output = gr.Textbox(label="Summary | TextRank")
|
274 |
summarize_button = gr.Button("Summarize")
|
275 |
|
276 |
+
def summarize(text):
|
277 |
+
if not text:
|
278 |
+
return "Warning: a text must be available."
|
279 |
+
summary = text_rank_summary(text)
|
280 |
return summary
|
281 |
|
282 |
summarize_button.click(
|
283 |
fn=summarize,
|
284 |
+
inputs=[text_output],
|
285 |
outputs=summary_output
|
286 |
)
|
287 |
|
288 |
with gr.TabItem("Download PDF"):
|
289 |
+
pdf_text_only = gr.Button("Download PDF with text Only")
|
290 |
pdf_summary_only = gr.Button("Download PDF with Summary Only")
|
291 |
pdf_both = gr.Button("Download PDF with Both")
|
292 |
|
293 |
+
pdf_output_text_only = gr.File(label="Download PDF")
|
294 |
pdf_output_summary_only = gr.File(label="Download PDF")
|
295 |
pdf_output_both = gr.File(label="Download PDF")
|
296 |
|
297 |
+
def generate_pdf_text_only(text):
|
298 |
+
return save_to_pdf(text, "")
|
299 |
|
300 |
def generate_pdf_summary_only(summary):
|
301 |
return save_to_pdf("", summary)
|
302 |
|
303 |
+
def generate_pdf_both(text, summary):
|
304 |
+
return save_to_pdf(text, summary)
|
305 |
|
306 |
+
pdf_text_only.click(
|
307 |
+
fn=generate_pdf_text_only,
|
308 |
+
inputs=[text_output],
|
309 |
+
outputs=[pdf_output_text_only]
|
310 |
)
|
311 |
|
312 |
pdf_summary_only.click(
|
|
|
317 |
|
318 |
pdf_both.click(
|
319 |
fn=generate_pdf_both,
|
320 |
+
inputs=[text_output, summary_output],
|
321 |
outputs=[pdf_output_both]
|
322 |
)
|
323 |
|
324 |
iface.launch(share=True, debug=True)
|
|