Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,11 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import time
|
| 3 |
import os
|
| 4 |
import spaces
|
|
@@ -19,26 +26,28 @@ from transformers import pipeline # AutoProcessor, AutoModelForSpeechSeq2Seq
|
|
| 19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 20 |
torch_dtype = torch.float32
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
@spaces.GPU(queue=True)
|
| 25 |
-
def transcribe_audio(audio_file):
|
| 26 |
if audio_file.endswith(".m4a"):
|
| 27 |
audio_file = convert_to_wav(audio_file)
|
| 28 |
|
| 29 |
start_time = time.time()
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
with torch.no_grad():
|
| 32 |
-
output =
|
| 33 |
|
| 34 |
-
|
| 35 |
end_time = time.time()
|
| 36 |
output_time = end_time - start_time
|
| 37 |
-
word_count = len(
|
| 38 |
|
| 39 |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {word_count}"
|
| 40 |
|
| 41 |
-
return
|
| 42 |
|
| 43 |
# [VERSION 3: full-on w/ 3 styles for summarization]
|
| 44 |
import nltk
|
|
@@ -56,11 +65,6 @@ nltk.download('stopwords')
|
|
| 56 |
|
| 57 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
| 58 |
|
| 59 |
-
def transcribe(audio_file):
|
| 60 |
-
transcription, result = transcribe_audio(audio_file)
|
| 61 |
-
text = transcription
|
| 62 |
-
return text, result
|
| 63 |
-
|
| 64 |
def clean_text(text):
|
| 65 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', str(text), flags=re.MULTILINE)
|
| 66 |
text = re.sub(r'\<a href', ' ', str(text))
|
|
@@ -96,7 +100,7 @@ summarization_model = AutoModelForSeq2SeqLM.from_pretrained("t5-base", return_di
|
|
| 96 |
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
| 97 |
summarization_model.to(device)
|
| 98 |
|
| 99 |
-
@spaces.GPU(queue=True)
|
| 100 |
def summarize_text(text):
|
| 101 |
preprocessed_text = preprocess_text(text)
|
| 102 |
if preprocessed_text is None:
|
|
@@ -174,13 +178,13 @@ import gradio as gr
|
|
| 174 |
from fpdf import FPDF
|
| 175 |
from PIL import Image
|
| 176 |
|
| 177 |
-
def save_to_pdf(
|
| 178 |
pdf = FPDF()
|
| 179 |
pdf.add_page()
|
| 180 |
pdf.set_font("Arial", size=12)
|
| 181 |
|
| 182 |
-
if
|
| 183 |
-
pdf.multi_cell(0, 10, "
|
| 184 |
|
| 185 |
# paragraph space
|
| 186 |
pdf.ln(10)
|
|
@@ -194,16 +198,16 @@ def save_to_pdf(transcription, summary):
|
|
| 194 |
|
| 195 |
banner_html = """
|
| 196 |
<div style="text-align: center;">
|
| 197 |
-
<img src="https://huggingface.co/spaces/camparchimedes/
|
| 198 |
</div>
|
| 199 |
"""
|
| 200 |
|
| 201 |
iface = gr.Interface(
|
| 202 |
fn=transcribe_audio,
|
| 203 |
inputs=gr.Audio(type="filepath"),
|
| 204 |
-
outputs="
|
| 205 |
title="SW Transcription App",
|
| 206 |
-
description="Upload an audio file to get the
|
| 207 |
theme="default",
|
| 208 |
live=False
|
| 209 |
)
|
|
@@ -218,17 +222,18 @@ with iface:
|
|
| 218 |
|
| 219 |
with gr.TabItem("Transcription"):
|
| 220 |
audio_input = gr.Audio(type="filepath")
|
| 221 |
-
|
| 222 |
result_output = gr.Textbox(label="Time taken and Number of words")
|
| 223 |
transcribe_button = gr.Button("Transcribe")
|
| 224 |
|
| 225 |
def transcribe(audio_file):
|
| 226 |
-
|
| 227 |
-
return
|
|
|
|
| 228 |
transcribe_button.click(
|
| 229 |
fn=transcribe,
|
| 230 |
inputs=[audio_input],
|
| 231 |
-
outputs=[
|
| 232 |
)
|
| 233 |
|
| 234 |
|
|
@@ -236,15 +241,15 @@ with iface:
|
|
| 236 |
summary_output = gr.Textbox(label="Summary | Graph-based")
|
| 237 |
summarize_button = gr.Button("Summarize")
|
| 238 |
|
| 239 |
-
def summarize(
|
| 240 |
-
if not
|
| 241 |
-
return "Warning: a
|
| 242 |
-
summary = graph_based_summary(
|
| 243 |
return summary
|
| 244 |
|
| 245 |
summarize_button.click(
|
| 246 |
fn=summarize,
|
| 247 |
-
inputs=[
|
| 248 |
outputs=summary_output
|
| 249 |
)
|
| 250 |
|
|
@@ -252,15 +257,15 @@ with iface:
|
|
| 252 |
summary_output = gr.Textbox(label="Summary | LexRank")
|
| 253 |
summarize_button = gr.Button("Summarize")
|
| 254 |
|
| 255 |
-
def summarize(
|
| 256 |
-
if not
|
| 257 |
-
return "Warning: a
|
| 258 |
-
summary = lex_rank_summary(
|
| 259 |
return summary
|
| 260 |
|
| 261 |
summarize_button.click(
|
| 262 |
fn=summarize,
|
| 263 |
-
inputs=[
|
| 264 |
outputs=summary_output
|
| 265 |
)
|
| 266 |
|
|
@@ -268,40 +273,40 @@ with iface:
|
|
| 268 |
summary_output = gr.Textbox(label="Summary | TextRank")
|
| 269 |
summarize_button = gr.Button("Summarize")
|
| 270 |
|
| 271 |
-
def summarize(
|
| 272 |
-
if not
|
| 273 |
-
return "Warning: a
|
| 274 |
-
summary = text_rank_summary(
|
| 275 |
return summary
|
| 276 |
|
| 277 |
summarize_button.click(
|
| 278 |
fn=summarize,
|
| 279 |
-
inputs=[
|
| 280 |
outputs=summary_output
|
| 281 |
)
|
| 282 |
|
| 283 |
with gr.TabItem("Download PDF"):
|
| 284 |
-
|
| 285 |
pdf_summary_only = gr.Button("Download PDF with Summary Only")
|
| 286 |
pdf_both = gr.Button("Download PDF with Both")
|
| 287 |
|
| 288 |
-
|
| 289 |
pdf_output_summary_only = gr.File(label="Download PDF")
|
| 290 |
pdf_output_both = gr.File(label="Download PDF")
|
| 291 |
|
| 292 |
-
def
|
| 293 |
-
return save_to_pdf(
|
| 294 |
|
| 295 |
def generate_pdf_summary_only(summary):
|
| 296 |
return save_to_pdf("", summary)
|
| 297 |
|
| 298 |
-
def generate_pdf_both(
|
| 299 |
-
return save_to_pdf(
|
| 300 |
|
| 301 |
-
|
| 302 |
-
fn=
|
| 303 |
-
inputs=[
|
| 304 |
-
outputs=[
|
| 305 |
)
|
| 306 |
|
| 307 |
pdf_summary_only.click(
|
|
@@ -312,9 +317,8 @@ with iface:
|
|
| 312 |
|
| 313 |
pdf_both.click(
|
| 314 |
fn=generate_pdf_both,
|
| 315 |
-
inputs=[
|
| 316 |
outputs=[pdf_output_both]
|
| 317 |
)
|
| 318 |
|
| 319 |
iface.launch(share=True, debug=True)
|
| 320 |
-
|
|
|
|
| 1 |
|
| 2 |
+
|
| 3 |
+
# -----------------COPY OF NEW EDITION[app.py]-----------------
|
| 4 |
+
|
| 5 |
+
# check if still the case...........??*********************************************
|
| 6 |
+
# "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
| 7 |
+
|
| 8 |
+
|
| 9 |
import time
|
| 10 |
import os
|
| 11 |
import spaces
|
|
|
|
| 26 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 27 |
torch_dtype = torch.float32
|
| 28 |
|
| 29 |
+
pipe = pipeline("automatic-speech-recognition", model="NbAiLabBeta/nb-whisper-large", device=device, torch_dtype=torch_dtype)
|
| 30 |
|
| 31 |
+
# @spaces.GPU(queue=True)
|
| 32 |
+
def transcribe_audio(audio_file, forced_decoder_ids):
|
| 33 |
if audio_file.endswith(".m4a"):
|
| 34 |
audio_file = convert_to_wav(audio_file)
|
| 35 |
|
| 36 |
start_time = time.time()
|
| 37 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
| 38 |
+
# check if still the case...........??*********************************************
|
| 39 |
+
# "You have passed task=transcribe, but also have set `forced_decoder_ids` to [[1, 50288], [2, 50360], [3, 50364]] which creates a conflict. `forced_decoder_ids` will be ignored in favor of task=transcribe."
|
| 40 |
with torch.no_grad():
|
| 41 |
+
output = pipe(audio_file, chunk_length_s=30, generate_kwargs={"forced_decoder_ids”: forced_decoder_ids}", "num_beams": 8, "language": "norwegian"}) # "task": "transcribe",
|
| 42 |
|
| 43 |
+
text = output["text"]
|
| 44 |
end_time = time.time()
|
| 45 |
output_time = end_time - start_time
|
| 46 |
+
word_count = len(text.split())
|
| 47 |
|
| 48 |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {word_count}"
|
| 49 |
|
| 50 |
+
return text, result
|
| 51 |
|
| 52 |
# [VERSION 3: full-on w/ 3 styles for summarization]
|
| 53 |
import nltk
|
|
|
|
| 65 |
|
| 66 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
def clean_text(text):
|
| 69 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', str(text), flags=re.MULTILINE)
|
| 70 |
text = re.sub(r'\<a href', ' ', str(text))
|
|
|
|
| 100 |
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
| 101 |
summarization_model.to(device)
|
| 102 |
|
| 103 |
+
# @spaces.GPU(queue=True)
|
| 104 |
def summarize_text(text):
|
| 105 |
preprocessed_text = preprocess_text(text)
|
| 106 |
if preprocessed_text is None:
|
|
|
|
| 178 |
from fpdf import FPDF
|
| 179 |
from PIL import Image
|
| 180 |
|
| 181 |
+
def save_to_pdf(text, summary):
|
| 182 |
pdf = FPDF()
|
| 183 |
pdf.add_page()
|
| 184 |
pdf.set_font("Arial", size=12)
|
| 185 |
|
| 186 |
+
if text:
|
| 187 |
+
pdf.multi_cell(0, 10, "text:\n" + text)
|
| 188 |
|
| 189 |
# paragraph space
|
| 190 |
pdf.ln(10)
|
|
|
|
| 198 |
|
| 199 |
banner_html = """
|
| 200 |
<div style="text-align: center;">
|
| 201 |
+
<img src="https://huggingface.co/spaces/camparchimedes/text_app/raw/main/picture.png" alt="Banner" width="100%" height="auto">
|
| 202 |
</div>
|
| 203 |
"""
|
| 204 |
|
| 205 |
iface = gr.Interface(
|
| 206 |
fn=transcribe_audio,
|
| 207 |
inputs=gr.Audio(type="filepath"),
|
| 208 |
+
outputs="transcription",
|
| 209 |
title="SW Transcription App",
|
| 210 |
+
description="Upload an audio file to get the text",
|
| 211 |
theme="default",
|
| 212 |
live=False
|
| 213 |
)
|
|
|
|
| 222 |
|
| 223 |
with gr.TabItem("Transcription"):
|
| 224 |
audio_input = gr.Audio(type="filepath")
|
| 225 |
+
text_output = gr.Textbox(label="text")
|
| 226 |
result_output = gr.Textbox(label="Time taken and Number of words")
|
| 227 |
transcribe_button = gr.Button("Transcribe")
|
| 228 |
|
| 229 |
def transcribe(audio_file):
|
| 230 |
+
text, result = transcribe_audio(audio_file)
|
| 231 |
+
return text, result
|
| 232 |
+
|
| 233 |
transcribe_button.click(
|
| 234 |
fn=transcribe,
|
| 235 |
inputs=[audio_input],
|
| 236 |
+
outputs=[text_output, result_output]
|
| 237 |
)
|
| 238 |
|
| 239 |
|
|
|
|
| 241 |
summary_output = gr.Textbox(label="Summary | Graph-based")
|
| 242 |
summarize_button = gr.Button("Summarize")
|
| 243 |
|
| 244 |
+
def summarize(text):
|
| 245 |
+
if not text:
|
| 246 |
+
return "Warning: a text must be available."
|
| 247 |
+
summary = graph_based_summary(text)
|
| 248 |
return summary
|
| 249 |
|
| 250 |
summarize_button.click(
|
| 251 |
fn=summarize,
|
| 252 |
+
inputs=[text_output],
|
| 253 |
outputs=summary_output
|
| 254 |
)
|
| 255 |
|
|
|
|
| 257 |
summary_output = gr.Textbox(label="Summary | LexRank")
|
| 258 |
summarize_button = gr.Button("Summarize")
|
| 259 |
|
| 260 |
+
def summarize(text):
|
| 261 |
+
if not text:
|
| 262 |
+
return "Warning: a text must be available."
|
| 263 |
+
summary = lex_rank_summary(text)
|
| 264 |
return summary
|
| 265 |
|
| 266 |
summarize_button.click(
|
| 267 |
fn=summarize,
|
| 268 |
+
inputs=[text_output],
|
| 269 |
outputs=summary_output
|
| 270 |
)
|
| 271 |
|
|
|
|
| 273 |
summary_output = gr.Textbox(label="Summary | TextRank")
|
| 274 |
summarize_button = gr.Button("Summarize")
|
| 275 |
|
| 276 |
+
def summarize(text):
|
| 277 |
+
if not text:
|
| 278 |
+
return "Warning: a text must be available."
|
| 279 |
+
summary = text_rank_summary(text)
|
| 280 |
return summary
|
| 281 |
|
| 282 |
summarize_button.click(
|
| 283 |
fn=summarize,
|
| 284 |
+
inputs=[text_output],
|
| 285 |
outputs=summary_output
|
| 286 |
)
|
| 287 |
|
| 288 |
with gr.TabItem("Download PDF"):
|
| 289 |
+
pdf_text_only = gr.Button("Download PDF with text Only")
|
| 290 |
pdf_summary_only = gr.Button("Download PDF with Summary Only")
|
| 291 |
pdf_both = gr.Button("Download PDF with Both")
|
| 292 |
|
| 293 |
+
pdf_output_text_only = gr.File(label="Download PDF")
|
| 294 |
pdf_output_summary_only = gr.File(label="Download PDF")
|
| 295 |
pdf_output_both = gr.File(label="Download PDF")
|
| 296 |
|
| 297 |
+
def generate_pdf_text_only(text):
|
| 298 |
+
return save_to_pdf(text, "")
|
| 299 |
|
| 300 |
def generate_pdf_summary_only(summary):
|
| 301 |
return save_to_pdf("", summary)
|
| 302 |
|
| 303 |
+
def generate_pdf_both(text, summary):
|
| 304 |
+
return save_to_pdf(text, summary)
|
| 305 |
|
| 306 |
+
pdf_text_only.click(
|
| 307 |
+
fn=generate_pdf_text_only,
|
| 308 |
+
inputs=[text_output],
|
| 309 |
+
outputs=[pdf_output_text_only]
|
| 310 |
)
|
| 311 |
|
| 312 |
pdf_summary_only.click(
|
|
|
|
| 317 |
|
| 318 |
pdf_both.click(
|
| 319 |
fn=generate_pdf_both,
|
| 320 |
+
inputs=[text_output, summary_output],
|
| 321 |
outputs=[pdf_output_both]
|
| 322 |
)
|
| 323 |
|
| 324 |
iface.launch(share=True, debug=True)
|
|
|