Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -44,13 +44,25 @@ summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
|
44 |
def transcribe_audio(audio_file):
|
45 |
if audio_file.endswith(".m4a"):
|
46 |
audio_file = convert_to_wav(audio_file)
|
47 |
-
|
48 |
start_time = time.time()
|
49 |
-
output = whisper_pipeline(audio_file)
|
50 |
-
text = output["text"]
|
51 |
-
output_time = time.time() - start_time
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {len(text.split())}"
|
|
|
54 |
return text, result
|
55 |
|
56 |
# Clean and preprocess text for summarization
|
|
|
44 |
def transcribe_audio(audio_file):
|
45 |
if audio_file.endswith(".m4a"):
|
46 |
audio_file = convert_to_wav(audio_file)
|
47 |
+
|
48 |
start_time = time.time()
|
|
|
|
|
|
|
49 |
|
50 |
+
# Prepare input and attention mask
|
51 |
+
inputs = whisper_pipeline.tokenizer(audio_file, return_tensors="pt", padding=True)
|
52 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
53 |
+
|
54 |
+
# Generate the transcription with attention_mask
|
55 |
+
output = whisper_pipeline.model.generate(
|
56 |
+
inputs['input_ids'],
|
57 |
+
attention_mask=inputs['attention_mask']
|
58 |
+
)
|
59 |
+
|
60 |
+
# Decode the output
|
61 |
+
text = whisper_pipeline.tokenizer.decode(output[0], skip_special_tokens=True)
|
62 |
+
|
63 |
+
output_time = time.time() - start_time
|
64 |
result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {len(text.split())}"
|
65 |
+
|
66 |
return text, result
|
67 |
|
68 |
# Clean and preprocess text for summarization
|