camparchimedes commited on
Commit
4a5b260
·
verified ·
1 Parent(s): 9e87cc4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -35,7 +35,7 @@ import torch
35
  #import torchaudio
36
  #import torchaudio.transforms as transforms
37
 
38
- from transformers import pipeline, AutoModel
39
 
40
  import spacy
41
  import networkx as nx
@@ -68,14 +68,19 @@ pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large"
68
 
69
  @spaces.GPU()
70
  def transcribe_audio(audio_file, batch_size=16):
71
- # Load the audio file into a numpy array
 
 
 
 
 
72
  audio = AudioSegment.from_wav(audio_file)
73
  samples = np.array(audio.get_array_of_samples())
74
  sample_rate = audio.frame_rate
75
 
76
  start_time = time.time()
77
 
78
- # Transcribe the audio file
79
  outputs = pipe(samples, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)
80
  text = outputs["text"]
81
 
@@ -84,16 +89,16 @@ def transcribe_audio(audio_file, batch_size=16):
84
  output_time = end_time - start_time
85
  word_count = len(text.split())
86
 
87
- # GPU usage
88
  memory = psutil.virtual_memory()
89
  gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
90
  gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
91
  gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
92
 
93
- # CPU usage
94
  cpu_usage = psutil.cpu_percent(interval=1)
95
 
96
- # System info string
97
  system_info = f"""
98
  *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
99
  *Processing time: {output_time:.2f} seconds.*
@@ -108,8 +113,7 @@ def transcribe_audio(audio_file, batch_size=16):
108
  # ------------summary section------------
109
 
110
 
111
-
112
- # -----------------BLOCKS NEED EDIT....!--------------
113
 
114
  @spaces.GPU()
115
  def clean_text(text):
 
35
  #import torchaudio
36
  #import torchaudio.transforms as transforms
37
 
38
+ from transformers import pipeline #AutoModel
39
 
40
  import spacy
41
  import networkx as nx
 
68
 
69
  @spaces.GPU()
70
  def transcribe_audio(audio_file, batch_size=16):
71
+
72
+ # --check if audio_file is tuple
73
+ if isinstance(audio_file, tuple):
74
+ audio_file = audio_file[0]
75
+
76
+ # --place audio file in numpy array
77
  audio = AudioSegment.from_wav(audio_file)
78
  samples = np.array(audio.get_array_of_samples())
79
  sample_rate = audio.frame_rate
80
 
81
  start_time = time.time()
82
 
83
+ # --transcribe
84
  outputs = pipe(samples, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)
85
  text = outputs["text"]
86
 
 
89
  output_time = end_time - start_time
90
  word_count = len(text.split())
91
 
92
+ # --GPU usage
93
  memory = psutil.virtual_memory()
94
  gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
95
  gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
96
  gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
97
 
98
+ # --CPU usage
99
  cpu_usage = psutil.cpu_percent(interval=1)
100
 
101
+ # --system info string
102
  system_info = f"""
103
  *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
104
  *Processing time: {output_time:.2f} seconds.*
 
113
  # ------------summary section------------
114
 
115
 
116
+ # ------------for app integration later------------
 
117
 
118
  @spaces.GPU()
119
  def clean_text(text):