camparchimedes commited on
Commit
5210388
·
verified ·
1 Parent(s): dd58d2e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -3
app.py CHANGED
@@ -38,9 +38,9 @@ def convert_to_wav(audio_file):
38
  # Initialize device for torch
39
  device = "cuda" if torch.cuda.is_available() else "cpu"
40
 
41
- # Load Whisper model and tokenizer
42
  whisper_processor = WhisperProcessor.from_pretrained("NbAiLab/nb-whisper-large")
43
- whisper_model = torch.hub.load('huggingface/pytorch-transformers', 'model', "NbAiLab/nb-whisper-large").to(device)
44
 
45
  def transcribe_audio(audio_file):
46
  if audio_file.endswith(".m4a"):
@@ -62,7 +62,6 @@ def transcribe_audio(audio_file):
62
  result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {len(text.split())}"
63
 
64
  return text, result
65
-
66
  # Clean and preprocess text for summarization
67
  def clean_text(text):
68
  text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
 
38
  # Initialize device for torch
39
  device = "cuda" if torch.cuda.is_available() else "cpu"
40
 
41
+ # Load Whisper model and processor directly using the transformers library
42
  whisper_processor = WhisperProcessor.from_pretrained("NbAiLab/nb-whisper-large")
43
+ whisper_model = WhisperForConditionalGeneration.from_pretrained("NbAiLab/nb-whisper-large").to(device)
44
 
45
  def transcribe_audio(audio_file):
46
  if audio_file.endswith(".m4a"):
 
62
  result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {len(text.split())}"
63
 
64
  return text, result
 
65
  # Clean and preprocess text for summarization
66
  def clean_text(text):
67
  text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)