camparchimedes commited on
Commit
5b098b4
·
verified ·
1 Parent(s): 6523d6c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -121,7 +121,6 @@ nlp.add_pipe('sentencizer')
121
  spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
122
 
123
  summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
124
- summarization_tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-bert-large") # <--not sure if this is needed..is not the tokenizer already part of this model..?
125
  # pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
126
 
127
  @spaces.GPU()
@@ -150,10 +149,10 @@ def summarize_text(text, file_upload):
150
  # ----add same if/elif logic as above here----
151
  #
152
  preprocessed_text = preprocess_text(text)
153
- inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
154
  inputs = inputs.to(device)
155
  summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
156
- return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
157
 
158
  @spaces.GPU()
159
  def build_similarity_matrix(sentences):
@@ -295,7 +294,7 @@ with iface:
295
  summarize_uploaded_button_graph.click(fn=graph_based_summary(file_upload), inputs=[text_input_graph], outputs=[summary_output_graph])
296
 
297
  with gr.TabItem("Summary | LexRank"):
298
- with gr.Blocks():
299
  text_output = gr.Textbox(label="Transcription Output")
300
  text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
301
  summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")
 
121
  spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
122
 
123
  summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
 
124
  # pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
125
 
126
  @spaces.GPU()
 
149
  # ----add same if/elif logic as above here----
150
  #
151
  preprocessed_text = preprocess_text(text)
152
+ inputs = summarization_model(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
153
  inputs = inputs.to(device)
154
  summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
155
+ return summarization_model.decode(summary_ids[0], skip_special_tokens=True)
156
 
157
  @spaces.GPU()
158
  def build_similarity_matrix(sentences):
 
294
  summarize_uploaded_button_graph.click(fn=graph_based_summary(file_upload), inputs=[text_input_graph], outputs=[summary_output_graph])
295
 
296
  with gr.TabItem("Summary | LexRank"):
297
+ with gr.Blocks():
298
  text_output = gr.Textbox(label="Transcription Output")
299
  text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
300
  summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")