Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,7 +35,7 @@ import torch
|
|
| 35 |
#import torchaudio
|
| 36 |
#import torchaudio.transforms as transforms
|
| 37 |
|
| 38 |
-
from transformers import pipeline,
|
| 39 |
|
| 40 |
import spacy
|
| 41 |
import networkx as nx
|
|
@@ -101,6 +101,11 @@ def transcribe_audio(audio_file, batch_size=16):
|
|
| 101 |
return text.strip(), system_info
|
| 102 |
|
| 103 |
# ------------summary section------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
@spaces.GPU()
|
| 105 |
def clean_text(text):
|
| 106 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
|
@@ -112,6 +117,9 @@ nlp = spacy.blank("nb") # 'nb' ==> codename = Norwegian Bokmål
|
|
| 112 |
nlp.add_pipe('sentencizer')
|
| 113 |
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
@spaces.GPU()
|
| 116 |
def preprocess_text(text):
|
| 117 |
# Process the text with SpaCy
|
|
@@ -122,7 +130,6 @@ def preprocess_text(text):
|
|
| 122 |
words = [token.text for token in doc if token.text.lower() not in stop_words]
|
| 123 |
return ' '.join(words)
|
| 124 |
|
| 125 |
-
# Summarize w/T5 model
|
| 126 |
@spaces.GPU()
|
| 127 |
def summarize_text(text):
|
| 128 |
preprocessed_text = preprocess_text(text)
|
|
@@ -130,7 +137,8 @@ def summarize_text(text):
|
|
| 130 |
inputs = inputs.to(device)
|
| 131 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
| 132 |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 133 |
-
|
|
|
|
| 134 |
def build_similarity_matrix(sentences, stop_words):
|
| 135 |
similarity_matrix = nx.Graph()
|
| 136 |
for i, tokens_a in enumerate(sentences):
|
|
@@ -141,6 +149,7 @@ def build_similarity_matrix(sentences, stop_words):
|
|
| 141 |
return similarity_matrix
|
| 142 |
|
| 143 |
# PageRank
|
|
|
|
| 144 |
def graph_based_summary(text, num_paragraphs=3):
|
| 145 |
doc = nlp(text)
|
| 146 |
sentences = [sent.text for sent in doc.sents]
|
|
@@ -157,8 +166,8 @@ def graph_based_summary(text, num_paragraphs=3):
|
|
| 157 |
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
|
| 158 |
|
| 159 |
# LexRank
|
|
|
|
| 160 |
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
|
| 161 |
-
|
| 162 |
doc = nlp(text)
|
| 163 |
sentences = [sent.text for sent in doc.sents]
|
| 164 |
if len(sentences) < num_paragraphs:
|
|
@@ -177,8 +186,8 @@ def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
|
|
| 177 |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
| 178 |
|
| 179 |
# TextRank
|
|
|
|
| 180 |
def text_rank_summary(text, num_paragraphs=3):
|
| 181 |
-
|
| 182 |
doc = nlp(text)
|
| 183 |
sentences = [sent.text for sent in doc.sents]
|
| 184 |
if len(sentences) < num_paragraphs:
|
|
@@ -268,7 +277,7 @@ with iface:
|
|
| 268 |
|
| 269 |
""")
|
| 270 |
|
| 271 |
-
|
| 272 |
summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output_text_rank])
|
| 273 |
summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
|
| 274 |
summarize_uploaded_button_text_rank.click(fn=text_rank_summary, inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
|
|
|
|
| 35 |
#import torchaudio
|
| 36 |
#import torchaudio.transforms as transforms
|
| 37 |
|
| 38 |
+
from transformers import pipeline, AutoModel
|
| 39 |
|
| 40 |
import spacy
|
| 41 |
import networkx as nx
|
|
|
|
| 101 |
return text.strip(), system_info
|
| 102 |
|
| 103 |
# ------------summary section------------
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# -----------------BLOCKS NEED EDIT....!--------------
|
| 108 |
+
|
| 109 |
@spaces.GPU()
|
| 110 |
def clean_text(text):
|
| 111 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
|
|
|
| 117 |
nlp.add_pipe('sentencizer')
|
| 118 |
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
|
| 119 |
|
| 120 |
+
summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
|
| 121 |
+
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
|
| 122 |
+
|
| 123 |
@spaces.GPU()
|
| 124 |
def preprocess_text(text):
|
| 125 |
# Process the text with SpaCy
|
|
|
|
| 130 |
words = [token.text for token in doc if token.text.lower() not in stop_words]
|
| 131 |
return ' '.join(words)
|
| 132 |
|
|
|
|
| 133 |
@spaces.GPU()
|
| 134 |
def summarize_text(text):
|
| 135 |
preprocessed_text = preprocess_text(text)
|
|
|
|
| 137 |
inputs = inputs.to(device)
|
| 138 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
| 139 |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 140 |
+
|
| 141 |
+
@spaces.GPU()
|
| 142 |
def build_similarity_matrix(sentences, stop_words):
|
| 143 |
similarity_matrix = nx.Graph()
|
| 144 |
for i, tokens_a in enumerate(sentences):
|
|
|
|
| 149 |
return similarity_matrix
|
| 150 |
|
| 151 |
# PageRank
|
| 152 |
+
@spaces.GPU()
|
| 153 |
def graph_based_summary(text, num_paragraphs=3):
|
| 154 |
doc = nlp(text)
|
| 155 |
sentences = [sent.text for sent in doc.sents]
|
|
|
|
| 166 |
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
|
| 167 |
|
| 168 |
# LexRank
|
| 169 |
+
@spaces.GPU()
|
| 170 |
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
|
|
|
|
| 171 |
doc = nlp(text)
|
| 172 |
sentences = [sent.text for sent in doc.sents]
|
| 173 |
if len(sentences) < num_paragraphs:
|
|
|
|
| 186 |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
| 187 |
|
| 188 |
# TextRank
|
| 189 |
+
@spaces.GPU()
|
| 190 |
def text_rank_summary(text, num_paragraphs=3):
|
|
|
|
| 191 |
doc = nlp(text)
|
| 192 |
sentences = [sent.text for sent in doc.sents]
|
| 193 |
if len(sentences) < num_paragraphs:
|
|
|
|
| 277 |
|
| 278 |
""")
|
| 279 |
|
| 280 |
+
summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
|
| 281 |
summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output_text_rank])
|
| 282 |
summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
|
| 283 |
summarize_uploaded_button_text_rank.click(fn=text_rank_summary, inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
|