camparchimedes commited on
Commit
8723cb5
·
verified ·
1 Parent(s): f49fe3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -16
app.py CHANGED
@@ -1,5 +1,5 @@
1
  # app.py
2
- # Version: 1.07 (08.24.24), ALPHA
3
  #---------------------------------------------------------------------------------------------------------------------------------------------
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
  # you may not use this file except in compliance with the License.
@@ -61,27 +61,14 @@ SIDEBAR_INFO = f"""
61
  # ------------transcribe section------------
62
 
63
 
64
-
65
- # ============UPDATED============[convert m4a audio to wav]
66
- @spaces.GPU()
67
- def convert_to_wav(filepath):
68
- _,file_ending = os.path.splitext(f'{filepath}')
69
- audio_file = filepath.replace(file_ending, ".wav")
70
- print("starting conversion to wav")
71
- os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
72
- return audio_file
73
- # ================================[------------------------]
74
-
75
-
76
  pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
77
 
78
  @spaces.GPU()
79
- def transcribe_audio(audio_file, batch_size=16):
80
- audio_file = convert_to_wav(audio_file)
81
 
82
  with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
83
  # --copy contents of uploaded audio file to temporary file
84
- temp_audio_file.write(open(audio_file, "rb").read())
85
  temp_audio_file.flush()
86
  # --use torchaudio to load it
87
  waveform, sample_rate = torchaudio.load(temp_audio_file.name)
 
1
  # app.py
2
+ # Version: 1.07a (08.27.24), ALPHA
3
  #---------------------------------------------------------------------------------------------------------------------------------------------
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
  # you may not use this file except in compliance with the License.
 
61
  # ------------transcribe section------------
62
 
63
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
65
 
66
  @spaces.GPU()
67
+ def transcribe_audio(audio, batch_size=16):
 
68
 
69
  with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
70
  # --copy contents of uploaded audio file to temporary file
71
+ temp_audio_file.write(open(audio, "rb").read())
72
  temp_audio_file.flush()
73
  # --use torchaudio to load it
74
  waveform, sample_rate = torchaudio.load(temp_audio_file.name)