Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -56,40 +56,19 @@ CACHE_EXAMPLES = torch.device('cuda') and os.getenv("CACHE_EXAMPLES", "0") == "1
|
|
56 |
device = torch.device('cuda')
|
57 |
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
58 |
|
59 |
-
def transcribe(file_upload, progress=gr.Progress(track_tqdm=True)):
|
60 |
|
61 |
-
file = file_upload # microphone if microphone is not None else
|
62 |
start_time = time.time()
|
63 |
-
|
64 |
-
# -- ex subrosa
|
65 |
-
audio, sr = librosa.load(file_upload, sr=None)
|
66 |
-
duration = librosa.get_duration(y=audio, sr=sr)
|
67 |
-
|
68 |
-
# -- asr pipeline
|
69 |
-
with torch.no_grad():
|
70 |
-
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, device=device)
|
71 |
-
|
72 |
-
# -- process audio in chunks of 30 seconds
|
73 |
-
chunk_size = sr * 30 # 30 seconds
|
74 |
-
text = ""
|
75 |
-
for start in range(0, len(audio), chunk_size):
|
76 |
-
end = min(start + chunk_size, len(audio))
|
77 |
-
chunk = audio[start:end]
|
78 |
-
|
79 |
-
# -- convert audio chunk to format for pipeline
|
80 |
-
chunk_file = "temp_chunk.wav"
|
81 |
-
sf.write(chunk_file, chunk, sr)
|
82 |
-
|
83 |
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
|
|
88 |
|
89 |
-
|
90 |
-
# -- chnk ad transcriptrauma
|
91 |
-
chunk_text = pipe(chunk_file)["text"]
|
92 |
-
text += chunk_text + " "
|
93 |
|
94 |
end_time = time.time()
|
95 |
output_time = end_time - start_time
|
@@ -101,21 +80,21 @@ def transcribe(file_upload, progress=gr.Progress(track_tqdm=True)):
|
|
101 |
memory = psutil.virtual_memory()
|
102 |
|
103 |
# --cpu metric
|
104 |
-
|
105 |
|
106 |
# --gpu metric
|
107 |
-
|
108 |
|
109 |
# --system info string
|
110 |
system_info = f"""
|
111 |
-
|
112 |
-
|
|
|
113 |
GPU Memory: {gpu_memory}%
|
114 |
GPU Utilization: {gpu_utilization}%
|
115 |
"""
|
116 |
-
|
117 |
-
return text.strip(), system_info
|
118 |
|
|
|
119 |
|
120 |
###############################################################################
|
121 |
# Interface.
|
@@ -186,7 +165,7 @@ with iface:
|
|
186 |
with gr.Column(scale=3):
|
187 |
text_output = gr.Textbox(label="Transkribert Tekst", elem_id="transcription_output")
|
188 |
with gr.Column(scale=1):
|
189 |
-
system_info = gr.Textbox(label="Antall sekunder, ord:", elem_id="system_info_box")
|
190 |
|
191 |
|
192 |
with gr.Tabs():
|
|
|
56 |
device = torch.device('cuda')
|
57 |
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
58 |
|
59 |
+
def transcribe(file_upload, progress=gr.Progress(track_tqdm=True)): # microphone
|
60 |
|
61 |
+
file = file_upload # microphone if microphone is not None else
|
62 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
#--------------____________________________________________--------------"
|
65 |
|
66 |
+
with torch.no_grad():
|
67 |
+
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, device=device)
|
68 |
|
69 |
+
text = pipe(file)["text"]
|
70 |
|
71 |
+
#--------------____________________________________________--------------"
|
|
|
|
|
|
|
72 |
|
73 |
end_time = time.time()
|
74 |
output_time = end_time - start_time
|
|
|
80 |
memory = psutil.virtual_memory()
|
81 |
|
82 |
# --cpu metric
|
83 |
+
cpu_usage = psutil.cpu_percent(interval=1)
|
84 |
|
85 |
# --gpu metric
|
86 |
+
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
|
87 |
|
88 |
# --system info string
|
89 |
system_info = f"""
|
90 |
+
Processing time: {output_time:.2f} seconds.
|
91 |
+
Number of words: {word_count}
|
92 |
+
CPU Usage: {cpu_usage}%
|
93 |
GPU Memory: {gpu_memory}%
|
94 |
GPU Utilization: {gpu_utilization}%
|
95 |
"""
|
|
|
|
|
96 |
|
97 |
+
return text.strip(), system_info
|
98 |
|
99 |
###############################################################################
|
100 |
# Interface.
|
|
|
165 |
with gr.Column(scale=3):
|
166 |
text_output = gr.Textbox(label="Transkribert Tekst", elem_id="transcription_output")
|
167 |
with gr.Column(scale=1):
|
168 |
+
system_info = gr.Textbox(label="Antall sekunder, ord, system data:", elem_id="system_info_box")
|
169 |
|
170 |
|
171 |
with gr.Tabs():
|