Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -5,89 +5,57 @@ import nltk
|
|
5 |
nltk.download('punkt')
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
|
8 |
-
|
9 |
import gradio as gr
|
10 |
import warnings
|
11 |
import torch
|
12 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
13 |
from pydub import AudioSegment
|
14 |
-
import soundfile as sf
|
15 |
-
import numpy as np
|
16 |
from fpdf import FPDF
|
17 |
from PIL import Image
|
18 |
import time
|
19 |
import os
|
20 |
-
# import spaces
|
21 |
|
22 |
warnings.filterwarnings("ignore")
|
23 |
|
24 |
-
# HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN')
|
25 |
-
|
26 |
-
processor = AutoProcessor.from_pretrained("NbAiLabBeta/nb-whisper-large-semantic")
|
27 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLabBeta/nb-whisper-large-semantic")
|
28 |
-
|
29 |
-
|
30 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
torch_dtype = torch.float32
|
32 |
-
model.to(device)
|
33 |
|
|
|
|
|
|
|
|
|
34 |
def convert_to_wav(audio_file):
|
35 |
audio = AudioSegment.from_file(audio_file, format="m4a")
|
36 |
wav_file = "temp.wav"
|
37 |
audio.export(wav_file, format="wav")
|
38 |
return wav_file
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
def transcribe_audio(audio_file, batch_size=4):
|
44 |
-
start_time = time.time()
|
45 |
-
|
46 |
if audio_file.endswith(".m4a"):
|
47 |
audio_file = convert_to_wav(audio_file)
|
48 |
|
49 |
-
|
50 |
-
chunk_size = 16000 * 30
|
51 |
-
chunks = [audio_input[i:i + chunk_size] for i in range(0, len(audio_input), chunk_size)]
|
52 |
-
|
53 |
-
transcription = ""
|
54 |
-
|
55 |
-
for i in range(0, len(chunks), batch_size):
|
56 |
-
batch_chunks = chunks[i:i + batch_size]
|
57 |
-
inputs = processor(batch_chunks, sampling_rate=16000, return_tensors="pt", padding=True)
|
58 |
-
inputs = inputs.to(device)
|
59 |
-
|
60 |
-
attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None
|
61 |
-
|
62 |
-
with torch.no_grad():
|
63 |
-
output = model.generate(
|
64 |
-
inputs.input_features,
|
65 |
-
max_length=2048,
|
66 |
-
num_beams=8,
|
67 |
-
attention_mask=attention_mask,
|
68 |
-
pad_token_id=processor.tokenizer.pad_token_id,
|
69 |
-
eos_token_id=processor.tokenizer.eos_token_id
|
70 |
-
)
|
71 |
|
72 |
-
|
|
|
73 |
|
|
|
74 |
end_time = time.time()
|
75 |
-
|
|
|
76 |
word_count = len(transcription.split())
|
77 |
|
78 |
-
result = f"Transcription: {transcription.strip()}\n\nTime taken: {
|
79 |
|
80 |
return transcription.strip(), result
|
81 |
|
82 |
-
|
83 |
-
# summarization model
|
84 |
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
85 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
86 |
-
|
87 |
-
# t5-base to device
|
88 |
summarization_model.to(device)
|
89 |
|
90 |
-
# Graph-based summarization
|
91 |
def summarize_text(text):
|
92 |
sentences = sent_tokenize(text)
|
93 |
if len(sentences) == 0:
|
@@ -102,48 +70,29 @@ def summarize_text(text):
|
|
102 |
|
103 |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
104 |
|
105 |
-
# Select top N sentences (e.g., 3 sentences for the summary)
|
106 |
top_n = 3
|
107 |
summary = " ".join([s for _, s in ranked_sentences[:top_n]])
|
108 |
return summary
|
109 |
|
110 |
-
#
|
111 |
-
image_html = """
|
112 |
-
<div style="text-align: center;">
|
113 |
-
<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/picture.png" alt="Banner" width="85%" height="auto">
|
114 |
-
</div>
|
115 |
-
"""
|
116 |
-
|
117 |
def save_to_pdf(transcription, summary):
|
118 |
pdf = FPDF()
|
119 |
pdf.add_page()
|
120 |
pdf.set_font("Arial", size=12)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
|
125 |
-
# paragraph space
|
126 |
pdf.ln(10)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
pdf_output_path = "transcription_summary.pdf"
|
132 |
pdf.output(pdf_output_path)
|
133 |
return pdf_output_path
|
134 |
|
135 |
-
# Gradio
|
136 |
-
iface = gr.Interface(
|
137 |
-
fn=transcribe_audio,
|
138 |
-
inputs=gr.Audio(type="filepath"),
|
139 |
-
outputs="text",
|
140 |
-
title="Audio Transcription App",
|
141 |
-
description="Upload an audio file to get the transcription",
|
142 |
-
theme="default",
|
143 |
-
live=False
|
144 |
-
)
|
145 |
-
|
146 |
-
# Gradio UI
|
147 |
iface = gr.Blocks()
|
148 |
|
149 |
with iface:
|
@@ -151,26 +100,24 @@ with iface:
|
|
151 |
gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.")
|
152 |
|
153 |
with gr.Tabs():
|
154 |
-
|
155 |
-
# First Tab: Transcription
|
156 |
with gr.TabItem("Transcription"):
|
157 |
audio_input = gr.Audio(type="filepath")
|
158 |
-
batch_size_input = gr.Slider(minimum=7, maximum=16, step=1, label="Batch Size")
|
159 |
transcription_output = gr.Textbox(label="Transcription | nb-whisper-large-semantic")
|
160 |
result_output = gr.Textbox(label="Time taken and Number of words")
|
161 |
transcribe_button = gr.Button("Transcribe")
|
162 |
|
163 |
-
def transcribe(audio_file
|
164 |
-
transcription, result = transcribe_audio(audio_file
|
165 |
return transcription, result
|
166 |
|
167 |
transcribe_button.click(
|
168 |
fn=transcribe,
|
169 |
-
inputs=[audio_input
|
170 |
outputs=[transcription_output, result_output]
|
171 |
)
|
172 |
|
173 |
-
#
|
174 |
with gr.TabItem("Summary"):
|
175 |
summary_output = gr.Textbox(label="Summary | TextRank, graph-based")
|
176 |
summarize_button = gr.Button("Summarize")
|
@@ -183,11 +130,11 @@ with iface:
|
|
183 |
|
184 |
summarize_button.click(
|
185 |
fn=summarize,
|
186 |
-
inputs=[transcription_output],
|
187 |
outputs=summary_output
|
188 |
)
|
189 |
|
190 |
-
#
|
191 |
with gr.TabItem("Download PDF"):
|
192 |
pdf_transcription_only = gr.Button("Download PDF with Transcription Only")
|
193 |
pdf_summary_only = gr.Button("Download PDF with Summary Only")
|
@@ -224,8 +171,5 @@ with iface:
|
|
224 |
outputs=[pdf_output_both]
|
225 |
)
|
226 |
|
227 |
-
|
228 |
-
# run
|
229 |
iface.launch(share=True, debug=True)
|
230 |
-
|
231 |
-
|
|
|
5 |
nltk.download('punkt')
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
|
|
|
8 |
import gradio as gr
|
9 |
import warnings
|
10 |
import torch
|
11 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
12 |
from pydub import AudioSegment
|
|
|
|
|
13 |
from fpdf import FPDF
|
14 |
from PIL import Image
|
15 |
import time
|
16 |
import os
|
|
|
17 |
|
18 |
warnings.filterwarnings("ignore")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
torch_dtype = torch.float32
|
|
|
22 |
|
23 |
+
# Initialize the ASR pipeline
|
24 |
+
pipe = pipeline("automatic-speech-recognition", model="NbAiLabBeta/nb-whisper-large-semantic", device=device, torch_dtype=torch.float32)
|
25 |
+
|
26 |
+
# Function to convert m4a files to wav
|
27 |
def convert_to_wav(audio_file):
|
28 |
audio = AudioSegment.from_file(audio_file, format="m4a")
|
29 |
wav_file = "temp.wav"
|
30 |
audio.export(wav_file, format="wav")
|
31 |
return wav_file
|
32 |
|
33 |
+
# Transcription function using the ASR pipeline
|
34 |
+
def transcribe_audio(audio_file):
|
|
|
|
|
|
|
|
|
35 |
if audio_file.endswith(".m4a"):
|
36 |
audio_file = convert_to_wav(audio_file)
|
37 |
|
38 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
with torch.no_grad():
|
41 |
+
output = pipe(audio_file, chunk_length_s=30, generate_kwargs={"num_beams": 8, "task": "transcribe", "language": "no"})
|
42 |
|
43 |
+
transcription = output["text"]
|
44 |
end_time = time.time()
|
45 |
+
|
46 |
+
output_time = end_time - start_time
|
47 |
word_count = len(transcription.split())
|
48 |
|
49 |
+
result = f"Transcription: {transcription.strip()}\n\nTime taken: {output_time:.2f} seconds\nNumber of words: {word_count}"
|
50 |
|
51 |
return transcription.strip(), result
|
52 |
|
53 |
+
# Summarization model setup
|
|
|
54 |
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
55 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
|
|
|
|
56 |
summarization_model.to(device)
|
57 |
|
58 |
+
# Graph-based summarization (TextRank)
|
59 |
def summarize_text(text):
|
60 |
sentences = sent_tokenize(text)
|
61 |
if len(sentences) == 0:
|
|
|
70 |
|
71 |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
72 |
|
|
|
73 |
top_n = 3
|
74 |
summary = " ".join([s for _, s in ranked_sentences[:top_n]])
|
75 |
return summary
|
76 |
|
77 |
+
# Save transcription and summary to PDF
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def save_to_pdf(transcription, summary):
|
79 |
pdf = FPDF()
|
80 |
pdf.add_page()
|
81 |
pdf.set_font("Arial", size=12)
|
82 |
|
83 |
+
if transcription:
|
84 |
+
pdf.multi_cell(0, 10, "Transcription:\n" + transcription)
|
85 |
|
|
|
86 |
pdf.ln(10)
|
87 |
|
88 |
+
if summary:
|
89 |
+
pdf.multi_cell(0, 10, "Summary:\n" + summary)
|
90 |
|
91 |
pdf_output_path = "transcription_summary.pdf"
|
92 |
pdf.output(pdf_output_path)
|
93 |
return pdf_output_path
|
94 |
|
95 |
+
# Gradio Interface setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
iface = gr.Blocks()
|
97 |
|
98 |
with iface:
|
|
|
100 |
gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.")
|
101 |
|
102 |
with gr.Tabs():
|
103 |
+
# Transcription Tab
|
|
|
104 |
with gr.TabItem("Transcription"):
|
105 |
audio_input = gr.Audio(type="filepath")
|
|
|
106 |
transcription_output = gr.Textbox(label="Transcription | nb-whisper-large-semantic")
|
107 |
result_output = gr.Textbox(label="Time taken and Number of words")
|
108 |
transcribe_button = gr.Button("Transcribe")
|
109 |
|
110 |
+
def transcribe(audio_file):
|
111 |
+
transcription, result = transcribe_audio(audio_file)
|
112 |
return transcription, result
|
113 |
|
114 |
transcribe_button.click(
|
115 |
fn=transcribe,
|
116 |
+
inputs=[audio_input],
|
117 |
outputs=[transcription_output, result_output]
|
118 |
)
|
119 |
|
120 |
+
# Summary Tab
|
121 |
with gr.TabItem("Summary"):
|
122 |
summary_output = gr.Textbox(label="Summary | TextRank, graph-based")
|
123 |
summarize_button = gr.Button("Summarize")
|
|
|
130 |
|
131 |
summarize_button.click(
|
132 |
fn=summarize,
|
133 |
+
inputs=[transcription_output],
|
134 |
outputs=summary_output
|
135 |
)
|
136 |
|
137 |
+
# PDF Download Tab
|
138 |
with gr.TabItem("Download PDF"):
|
139 |
pdf_transcription_only = gr.Button("Download PDF with Transcription Only")
|
140 |
pdf_summary_only = gr.Button("Download PDF with Summary Only")
|
|
|
171 |
outputs=[pdf_output_both]
|
172 |
)
|
173 |
|
174 |
+
# Run the Gradio interface
|
|
|
175 |
iface.launch(share=True, debug=True)
|
|
|
|