Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ import spaces
|
|
| 17 |
import gradio as gr
|
| 18 |
from PIL import Image
|
| 19 |
#from pydub import AudioSegment
|
| 20 |
-
from scipy.io import wavfile
|
| 21 |
|
| 22 |
import os
|
| 23 |
import re
|
|
@@ -26,6 +26,7 @@ import warnings
|
|
| 26 |
#import datetime
|
| 27 |
import subprocess
|
| 28 |
from pathlib import Path
|
|
|
|
| 29 |
from fpdf import FPDF
|
| 30 |
|
| 31 |
import psutil
|
|
@@ -69,23 +70,26 @@ def convert_to_wav(filepath):
|
|
| 69 |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
| 70 |
|
| 71 |
@spaces.GPU()
|
| 72 |
-
def transcribe_audio(
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
# --convert to mono
|
| 77 |
-
if waveform.ndim > 1:
|
| 78 |
-
waveform = waveform[0, :]
|
| 79 |
-
|
| 80 |
-
# --waveform to ndnumpy array
|
| 81 |
-
waveform = waveform.numpy()
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
|
|
|
| 85 |
|
| 86 |
# --pipe it
|
| 87 |
with torch.no_grad():
|
| 88 |
-
outputs = pipe(
|
| 89 |
|
| 90 |
end_time = time.time()
|
| 91 |
|
|
|
|
| 17 |
import gradio as gr
|
| 18 |
from PIL import Image
|
| 19 |
#from pydub import AudioSegment
|
| 20 |
+
#from scipy.io import wavfile
|
| 21 |
|
| 22 |
import os
|
| 23 |
import re
|
|
|
|
| 26 |
#import datetime
|
| 27 |
import subprocess
|
| 28 |
from pathlib import Path
|
| 29 |
+
import tempfile
|
| 30 |
from fpdf import FPDF
|
| 31 |
|
| 32 |
import psutil
|
|
|
|
| 70 |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
| 71 |
|
| 72 |
@spaces.GPU()
|
| 73 |
+
def transcribe_audio(audio_file, batch_size=16, sample_rate=16000):
|
| 74 |
+
|
| 75 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 76 |
+
temp_path = Path(tmpdirname) / "audio_file"
|
| 77 |
+
|
| 78 |
+
with open(temp_path, "wb") as f:
|
| 79 |
+
f.write(audio_file.read())
|
| 80 |
+
|
| 81 |
+
waveform, sample_rate = torchaudio.load(str(temp_path))
|
| 82 |
+
|
| 83 |
+
samples = waveform.numpy()
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
if samples.ndim > 1:
|
| 87 |
+
samples = samples[0, :]
|
| 88 |
+
|
| 89 |
|
| 90 |
# --pipe it
|
| 91 |
with torch.no_grad():
|
| 92 |
+
outputs = pipe(samples, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)
|
| 93 |
|
| 94 |
end_time = time.time()
|
| 95 |
|