Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
"""
|
2 |
-
Version: 5th_pruned_optimized_transcription_app.py (alias HF_modded_nb-whisper_T4)
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
# you may not use this file except in compliance with the License.
|
@@ -16,6 +15,7 @@ Description: webapp, transkribering (norsk), NbAiLab/nb-whisper-large, oppsummer
|
|
16 |
# See the License for the specific language governing permissions and
|
17 |
# limitations under the License.
|
18 |
|
|
|
19 |
import time
|
20 |
import os
|
21 |
import re
|
@@ -44,80 +44,8 @@ from fpdf import FPDF
|
|
44 |
from PIL import Image
|
45 |
# from huggingface_hub import model_info
|
46 |
|
47 |
-
#############################################################################################################################################3
|
48 |
# Suppress warnings
|
49 |
warnings.filterwarnings("ignore")
|
50 |
-
"""
|
51 |
-
def generate(
|
52 |
-
self,
|
53 |
-
input_features: Optional[torch.Tensor] = None, # <====================== ACTIVE
|
54 |
-
generation_config: Optional[GenerationConfig] = None, # <====================== could be ACTIVE(ed.)*
|
55 |
-
logits_processor: Optional[LogitsProcessorList] = None,
|
56 |
-
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
57 |
-
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
58 |
-
synced_gpus: bool = False,
|
59 |
-
return_timestamps: Optional[bool] = None,
|
60 |
-
task: Optional[str] = None,
|
61 |
-
language: Optional[Union[str, List[str]]] = None, # <====================== ACTIVE
|
62 |
-
is_multilingual: Optional[bool] = None,
|
63 |
-
prompt_ids: Optional[torch.Tensor] = None,
|
64 |
-
prompt_condition_type: Optional[str] = None, # first-segment, all-segments
|
65 |
-
condition_on_prev_tokens: Optional[bool] = None,
|
66 |
-
temperature: Optional[Union[float, Tuple[float, ...]]] = None,
|
67 |
-
compression_ratio_threshold: Optional[float] = None,
|
68 |
-
logprob_threshold: Optional[float] = None,
|
69 |
-
no_speech_threshold: Optional[float] = None,
|
70 |
-
num_segment_frames: Optional[int] = None,
|
71 |
-
attention_mask: Optional[torch.Tensor] = None, # <====================== NOT ACTIVE by DEFAULT
|
72 |
-
time_precision: float = 0.02,
|
73 |
-
return_token_timestamps: Optional[bool] = None,
|
74 |
-
return_segments: bool = False,
|
75 |
-
return_dict_in_generate: Optional[bool] = None,
|
76 |
-
**kwargs, # <====================== ACTIVE
|
77 |
-
):
|
78 |
-
*generation_config (`~generation.GenerationConfig`, *optional*):
|
79 |
-
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
80 |
-
passed to generate matching the attributes of `generation_config` will override them. If
|
81 |
-
`generation_config` is not provided, the default will be used, which had the following loading
|
82 |
-
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
83 |
-
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
84 |
-
default values, whose documentation should be checked to parameterize generation.
|
85 |
-
|
86 |
-
from v4.39 the forced decoder ids are always None in favour of decoder input ids
|
87 |
-
generation_config.forced_decoder_ids = None
|
88 |
-
|
89 |
-
Example:
|
90 |
-
|
91 |
-
- *Longform transcription*: To transcribe or translate audios longer than 30 seconds, process the audio files without truncation and pass all mel features at once to generate.
|
92 |
-
|
93 |
-
```python
|
94 |
-
>>> import torch
|
95 |
-
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
|
96 |
-
>>> from datasets import load_dataset, Audio
|
97 |
-
|
98 |
-
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
|
99 |
-
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
100 |
-
>>> model.cuda() # doctest: +IGNORE_RESULT
|
101 |
-
|
102 |
-
>>> # load audios > 30 seconds
|
103 |
-
>>> ds = load_dataset("distil-whisper/meanwhile", "default")["test"]
|
104 |
-
>>> # resample to 16kHz
|
105 |
-
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
|
106 |
-
>>> # take first 8 audios and retrieve array
|
107 |
-
>>> audio = ds[:8]["audio"]
|
108 |
-
>>> audio = [x["array"] for x in audio]
|
109 |
-
|
110 |
-
>>> # make sure to NOT truncate the input audio, to return the `attention_mask` and to pad to the longest audio
|
111 |
-
>>> inputs = processor(audio, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True, sampling_rate=16_000)
|
112 |
-
>>> inputs = inputs.to("cuda", torch.float32)
|
113 |
-
|
114 |
-
>>> # transcribe audio to ids
|
115 |
-
>>> generated_ids = model.generate(**inputs)
|
116 |
-
|
117 |
-
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
118 |
-
>>> transcription[0]
|
119 |
-
" Folks, if you watch the show, you know, I spent a lot of time (..)"
|
120 |
-
"""
|
121 |
|
122 |
# Convert m4a audio to wav format
|
123 |
def convert_to_wav(audio_file):
|
@@ -125,36 +53,11 @@ def convert_to_wav(audio_file):
|
|
125 |
wav_file = "temp.wav"
|
126 |
audio.export(wav_file, format="wav")
|
127 |
return wav_file
|
128 |
-
#############################################################################################################################################3
|
129 |
-
#
|
130 |
-
#
|
131 |
-
#
|
132 |
-
#
|
133 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
134 |
processor = AutoProcessor.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
|
135 |
model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
|
136 |
model.cuda() # device = 0 if torch.cuda.is_available() else "cpu"
|
137 |
-
|
138 |
-
"""
|
139 |
-
# 0. deprecate old inputs
|
140 |
-
if "inputs" in kwargs:
|
141 |
-
input_features = kwargs.pop("inputs")
|
142 |
-
warnings.warn(
|
143 |
-
"The input name `inputs` is deprecated. Please make sure to use `input_features` instead.",
|
144 |
-
FutureWarning,
|
145 |
-
)
|
146 |
-
|
147 |
-
# 1. prepare generation config
|
148 |
-
generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs)
|
149 |
-
|
150 |
-
# 2. set global generate variables
|
151 |
-
#input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0]
|
152 |
-
#num_segment_frames = input_stride * self.config.max_source_positions
|
153 |
-
#batch_size, total_input_frames = self._retrieve_total_input_frames(
|
154 |
-
input_features=input_features, kwargs=kwargs #input_stride=input_stride,
|
155 |
-
)
|
156 |
-
"""
|
157 |
-
|
158 |
generate_kwargs = {
|
159 |
"num_beams": 5,
|
160 |
"language": "no",
|
@@ -163,20 +66,14 @@ generate_kwargs = {
|
|
163 |
}
|
164 |
|
165 |
def transcribe_audio(audio_file, chunk_length_s=30):
|
166 |
-
#---------------------------------------------------------------------------------------------------------------------------------------------
|
167 |
-
#
|
168 |
-
#
|
169 |
-
#
|
170 |
-
#
|
171 |
-
#############################################################################################################################################3
|
172 |
if audio_file.endswith(".m4a"):
|
173 |
audio_file = convert_to_wav(audio_file)
|
174 |
|
175 |
start_time = time.time()
|
176 |
-
# Load waveform
|
177 |
waveform, sample_rate = torchaudio.load(audio_file)
|
178 |
|
179 |
-
# Convert to mono
|
180 |
if waveform.shape[0] > 1:
|
181 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
182 |
|
@@ -185,11 +82,11 @@ def transcribe_audio(audio_file, chunk_length_s=30):
|
|
185 |
waveform = resampler(waveform)
|
186 |
sample_rate = 16000
|
187 |
|
188 |
-
# Calculate
|
189 |
chunk_size = chunk_length_s * sample_rate
|
190 |
num_chunks = waveform.shape[1] // chunk_size + int(waveform.shape[1] % chunk_size != 0)
|
191 |
|
192 |
-
# Initialize empty list
|
193 |
full_text = []
|
194 |
|
195 |
for i in range(num_chunks):
|
@@ -197,16 +94,10 @@ def transcribe_audio(audio_file, chunk_length_s=30):
|
|
197 |
end = min((i + 1) * chunk_size, waveform.shape[1])
|
198 |
chunk_waveform = waveform[:, start:end]
|
199 |
|
200 |
-
# Check chunk waveform
|
201 |
if chunk_waveform.shape[0] > 1:
|
202 |
chunk_waveform = torch.mean(chunk_waveform, dim=0, keepdim=True)
|
203 |
-
#############################################################################################################################################3
|
204 |
-
#
|
205 |
-
#
|
206 |
-
#
|
207 |
-
#
|
208 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
209 |
-
|
210 |
# make sure to NOT truncate the input audio, to return the `attention_mask` and to pad to the longest audio
|
211 |
inputs = processor(chunk_waveform.squeeze(0).numpy(), sampling_rate=sample_rate, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True)
|
212 |
inputs = inputs.to("cuda", torch.float32)
|
@@ -218,18 +109,12 @@ def transcribe_audio(audio_file, chunk_length_s=30):
|
|
218 |
# transcription
|
219 |
chunk_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
220 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
221 |
-
#
|
222 |
-
#
|
223 |
-
#
|
224 |
-
#
|
225 |
-
#############################################################################################################################################3
|
226 |
full_text.append(chunk_text)
|
227 |
-
# Combine the transcribed text from all chunks
|
228 |
text = " ".join(full_text)
|
229 |
|
230 |
output_time = time.time() - start_time
|
231 |
|
232 |
-
#
|
233 |
audio_duration = waveform.shape[1] / sample_rate
|
234 |
# Real-time Factor (RTF)
|
235 |
rtf = output_time / audio_duration
|
@@ -244,45 +129,11 @@ def transcribe_audio(audio_file, chunk_length_s=30):
|
|
244 |
"It is the ratio of transcription time to the duration of the audio.\n\n"
|
245 |
"An RTF of less than 1 means the transcription process is faster than real-time (expected)."
|
246 |
)
|
247 |
-
#############################################################################################################################################3
|
248 |
-
#
|
249 |
-
#
|
250 |
-
#
|
251 |
-
#
|
252 |
-
#---------------------------------------------------------------------------------------------------------------------------------------------
|
253 |
|
254 |
return text, result
|
255 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
256 |
-
|
257 |
-
#
|
258 |
-
#
|
259 |
-
#
|
260 |
-
#
|
261 |
-
#
|
262 |
-
#
|
263 |
-
#
|
264 |
-
#
|
265 |
-
#
|
266 |
-
#
|
267 |
-
#
|
268 |
-
#
|
269 |
-
#
|
270 |
-
#
|
271 |
-
#
|
272 |
-
#
|
273 |
-
#
|
274 |
-
#
|
275 |
-
#
|
276 |
-
#
|
277 |
-
#
|
278 |
-
#
|
279 |
-
#
|
280 |
-
#
|
281 |
-
#
|
282 |
-
#
|
283 |
-
#
|
284 |
-
#
|
285 |
-
# Clean and preprocess/@summarization
|
286 |
def clean_text(text):
|
287 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
288 |
text = re.sub(r'[^\w\s]', '', text)
|
@@ -308,7 +159,7 @@ def summarize_text(text):
|
|
308 |
inputs = inputs.to(device)
|
309 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
310 |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
311 |
-
|
312 |
# Builds similarity matrix
|
313 |
def build_similarity_matrix(sentences, stop_words):
|
314 |
similarity_matrix = nx.Graph()
|
|
|
|
|
|
|
1 |
|
2 |
+
# app.py
|
3 |
+
# Version: 1.06 (08.24.24)
|
4 |
+
|
5 |
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
# See the License for the specific language governing permissions and
|
16 |
# limitations under the License.
|
17 |
|
18 |
+
|
19 |
import time
|
20 |
import os
|
21 |
import re
|
|
|
44 |
from PIL import Image
|
45 |
# from huggingface_hub import model_info
|
46 |
|
|
|
47 |
# Suppress warnings
|
48 |
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Convert m4a audio to wav format
|
51 |
def convert_to_wav(audio_file):
|
|
|
53 |
wav_file = "temp.wav"
|
54 |
audio.export(wav_file, format="wav")
|
55 |
return wav_file
|
|
|
|
|
|
|
|
|
|
|
56 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
57 |
processor = AutoProcessor.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
|
58 |
model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
|
59 |
model.cuda() # device = 0 if torch.cuda.is_available() else "cpu"
|
60 |
+
#---------------------------------------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
generate_kwargs = {
|
62 |
"num_beams": 5,
|
63 |
"language": "no",
|
|
|
66 |
}
|
67 |
|
68 |
def transcribe_audio(audio_file, chunk_length_s=30):
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
if audio_file.endswith(".m4a"):
|
70 |
audio_file = convert_to_wav(audio_file)
|
71 |
|
72 |
start_time = time.time()
|
73 |
+
# Load waveform w/ torchaudio
|
74 |
waveform, sample_rate = torchaudio.load(audio_file)
|
75 |
|
76 |
+
# Convert to mono
|
77 |
if waveform.shape[0] > 1:
|
78 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
79 |
|
|
|
82 |
waveform = resampler(waveform)
|
83 |
sample_rate = 16000
|
84 |
|
85 |
+
# Calculate number of chunks
|
86 |
chunk_size = chunk_length_s * sample_rate
|
87 |
num_chunks = waveform.shape[1] // chunk_size + int(waveform.shape[1] % chunk_size != 0)
|
88 |
|
89 |
+
# Initialize empty list; stores transcribed text from ea.chunk
|
90 |
full_text = []
|
91 |
|
92 |
for i in range(num_chunks):
|
|
|
94 |
end = min((i + 1) * chunk_size, waveform.shape[1])
|
95 |
chunk_waveform = waveform[:, start:end]
|
96 |
|
97 |
+
# Check chunk waveform properly shaped
|
98 |
if chunk_waveform.shape[0] > 1:
|
99 |
chunk_waveform = torch.mean(chunk_waveform, dim=0, keepdim=True)
|
|
|
|
|
|
|
|
|
|
|
100 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
|
|
101 |
# make sure to NOT truncate the input audio, to return the `attention_mask` and to pad to the longest audio
|
102 |
inputs = processor(chunk_waveform.squeeze(0).numpy(), sampling_rate=sample_rate, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True)
|
103 |
inputs = inputs.to("cuda", torch.float32)
|
|
|
109 |
# transcription
|
110 |
chunk_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
111 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
112 |
full_text.append(chunk_text)
|
|
|
113 |
text = " ".join(full_text)
|
114 |
|
115 |
output_time = time.time() - start_time
|
116 |
|
117 |
+
# (in seconds)
|
118 |
audio_duration = waveform.shape[1] / sample_rate
|
119 |
# Real-time Factor (RTF)
|
120 |
rtf = output_time / audio_duration
|
|
|
129 |
"It is the ratio of transcription time to the duration of the audio.\n\n"
|
130 |
"An RTF of less than 1 means the transcription process is faster than real-time (expected)."
|
131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
return text, result
|
134 |
#---------------------------------------------------------------------------------------------------------------------------------------------
|
135 |
+
|
136 |
+
# Clean and preprocess text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
def clean_text(text):
|
138 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
139 |
text = re.sub(r'[^\w\s]', '', text)
|
|
|
159 |
inputs = inputs.to(device)
|
160 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
161 |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
162 |
+
|
163 |
# Builds similarity matrix
|
164 |
def build_similarity_matrix(sentences, stop_words):
|
165 |
similarity_matrix = nx.Graph()
|