Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,9 @@
|
|
16 |
import spaces
|
17 |
import gradio as gr
|
18 |
from PIL import Image
|
19 |
-
from pydub import AudioSegment
|
|
|
|
|
20 |
import os
|
21 |
import re
|
22 |
import time
|
@@ -32,7 +34,7 @@ from gpuinfo import GPUInfo
|
|
32 |
#import csv
|
33 |
import numpy as np
|
34 |
import torch
|
35 |
-
import torchaudio
|
36 |
import torchaudio.transforms as transforms
|
37 |
|
38 |
from transformers import pipeline, AutoModel
|
@@ -67,22 +69,19 @@ def convert_to_wav(filepath):
|
|
67 |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
68 |
|
69 |
@spaces.GPU()
|
70 |
-
def transcribe_audio(audio_file, batch_size=16
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
waveform = waveform[0, :]
|
78 |
-
|
79 |
-
waveform = waveform.numpy()
|
80 |
|
81 |
start_time = time.time()
|
82 |
|
83 |
# --pipe it
|
84 |
with torch.no_grad():
|
85 |
-
outputs = pipe(
|
86 |
|
87 |
end_time = time.time()
|
88 |
|
@@ -110,7 +109,6 @@ def transcribe_audio(audio_file, batch_size=16, sample_rate =16000):
|
|
110 |
return text.strip(), system_info
|
111 |
|
112 |
|
113 |
-
|
114 |
# ------------summary section------------
|
115 |
|
116 |
|
|
|
16 |
import spaces
|
17 |
import gradio as gr
|
18 |
from PIL import Image
|
19 |
+
#from pydub import AudioSegment
|
20 |
+
from scipy.io import wavfile
|
21 |
+
|
22 |
import os
|
23 |
import re
|
24 |
import time
|
|
|
34 |
#import csv
|
35 |
import numpy as np
|
36 |
import torch
|
37 |
+
#import torchaudio
|
38 |
import torchaudio.transforms as transforms
|
39 |
|
40 |
from transformers import pipeline, AutoModel
|
|
|
69 |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
70 |
|
71 |
@spaces.GPU()
|
72 |
+
def transcribe_audio(audio_file, batch_size=16): # sample_rate=16000
|
73 |
+
sample_rate, samples = wavfile.read(audio_file)
|
74 |
+
waveform, sample_rate = torchaudio.load(audio_file) # avoids TypeError here?
|
75 |
|
76 |
+
# --convert to mono
|
77 |
+
if len(samples.shape) > 1:
|
78 |
+
samples = samples[:, 0]
|
|
|
|
|
|
|
79 |
|
80 |
start_time = time.time()
|
81 |
|
82 |
# --pipe it
|
83 |
with torch.no_grad():
|
84 |
+
outputs = pipe(samples, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)
|
85 |
|
86 |
end_time = time.time()
|
87 |
|
|
|
109 |
return text.strip(), system_info
|
110 |
|
111 |
|
|
|
112 |
# ------------summary section------------
|
113 |
|
114 |
|