import gradio as gr # from PIL import Image from transformers.utils import logging from transformers import BlipForConditionalGeneration, AutoProcessor logging.set_verbosity_error() model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") def caption_image(image): inputs = processor(image, return_tensors="pt") out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption image_input = gr.inputs.Image() caption_output = gr.outputs.Textbox() gr.Interface(caption_image, image_input, caption_output).launch()