Spaces:
Sleeping
Sleeping
File size: 1,793 Bytes
0e27905 d6888a9 0e27905 9e601d1 d6888a9 9e601d1 d6888a9 9e601d1 d6888a9 9e601d1 d6888a9 9e601d1 d6888a9 0e27905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import cv2
import numpy as np
from skimage.metrics import structural_similarity as ssim
def preprocess_image(image):
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
return blurred
def compare_images(image1, image2):
# Preprocess images
gray1 = preprocess_image(image1)
gray2 = preprocess_image(image2)
# Compute SSIM between the two images
score, diff = ssim(gray1, gray2, full=True)
diff = (diff * 255).astype("uint8")
# Apply adaptive thresholding for better object isolation
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV)
# Find contours of differences
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter out small noise using contour area threshold
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 500]
# Create a mask to isolate only the significant added object
mask = np.zeros_like(image1)
cv2.drawContours(mask, filtered_contours, -1, (255, 255, 255), thickness=cv2.FILLED)
# Apply the mask to highlight the object added in the second image
highlighted = cv2.bitwise_and(image2, mask)
return highlighted
demo = gr.Interface(
fn=compare_images,
inputs=[
gr.Image(type="numpy", label="Image Without Object"),
gr.Image(type="numpy", label="Image With Object")
],
outputs=gr.Image(type="numpy", label="Highlighted Differences"),
title="Object Difference Highlighter",
description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object."
)
demo.launch()
|