Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
from skimage.metrics import structural_similarity as ssim | |
def preprocess_image(image, blur_value): | |
# Convert to grayscale | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Apply Gaussian blur to reduce noise | |
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0) | |
return blurred | |
def compare_images(image1, image2, blur_value, technique, threshold_value): | |
# Preprocess images | |
gray1 = preprocess_image(image1, blur_value) | |
gray2 = preprocess_image(image2, blur_value) | |
# Compute SSIM between the two images | |
score, diff = ssim(gray1, gray2, full=True) | |
diff = (diff * 255).astype("uint8") | |
if technique == "Adaptive Threshold": | |
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV) | |
elif technique == "Otsu's Threshold": | |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) | |
else: # Simple Binary | |
_, thresh = cv2.threshold(diff, threshold_value, 255, cv2.THRESH_BINARY) | |
# Find contours of differences | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# Filter out small noise using contour area threshold | |
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 500] | |
# Create a mask to isolate only the significant added object | |
mask = np.zeros_like(image1, dtype=np.uint8) | |
cv2.drawContours(mask, filtered_contours, -1, (255, 255, 255), thickness=cv2.FILLED) | |
# Apply the mask to highlight the object added in the second image | |
highlighted = cv2.bitwise_and(image2, mask) | |
# Create a magenta overlay where changes occurred | |
diff_colored = np.zeros_like(image1, dtype=np.uint8) | |
diff_colored[:, :, 0] = thresh # Set blue channel to zero | |
diff_colored[:, :, 1] = 0 # Set green channel to zero | |
diff_colored[:, :, 2] = thresh # Set red channel to highlight in magenta | |
# Combine the original image with the magenta overlay | |
overlayed = cv2.addWeighted(image1, 0.7, diff_colored, 0.3, 0) | |
return highlighted, overlayed | |
def update_threshold_visibility(technique): | |
return gr.update(visible=(technique == "Simple Binary")) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Object Difference Highlighter\nUpload two images: one without an object and one with an object. The app will highlight only the newly added object and show the real differences in magenta overlayed on the original image.") | |
with gr.Row(): | |
img1 = gr.Image(type="numpy", label="Image Without Object") | |
img2 = gr.Image(type="numpy", label="Image With Object") | |
blur_slider = gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur") | |
technique_dropdown = gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold", interactive=True) | |
threshold_slider = gr.Slider(minimum=0, maximum=255, step=1, value=50, label="Threshold Value", visible=False) | |
technique_dropdown.change(update_threshold_visibility, inputs=[technique_dropdown], outputs=[threshold_slider]) | |
output1 = gr.Image(type="numpy", label="Highlighted Differences") | |
output2 = gr.Image(type="numpy", label="Raw Difference Overlay (Magenta)") | |
btn = gr.Button("Process") | |
btn.click(compare_images, inputs=[img1, img2, blur_slider, technique_dropdown, threshold_slider], outputs=[output1, output2]) | |
demo.launch() | |