Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
from skimage.metrics import structural_similarity as ssim | |
def compare_images(image1, image2): | |
# Convert images to grayscale | |
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) | |
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) | |
# Compute SSIM between the two images | |
score, diff = ssim(gray1, gray2, full=True) | |
diff = (diff * 255).astype("uint8") | |
# Threshold the difference image to get regions with major changes | |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) | |
# Find contours of differences | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# Create a mask to isolate only the significant added object | |
mask = np.zeros_like(image1) | |
cv2.drawContours(mask, contours, -1, (255, 255, 255), thickness=cv2.FILLED) | |
# Apply the mask to highlight the object added in the second image | |
highlighted = cv2.bitwise_and(image2, mask) | |
return highlighted | |
demo = gr.Interface( | |
fn=compare_images, | |
inputs=[ | |
gr.Image(type="numpy", label="Image Without Object"), | |
gr.Image(type="numpy", label="Image With Object") | |
], | |
outputs=gr.Image(type="numpy", label="Highlighted Differences"), | |
title="Object Difference Highlighter", | |
description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object." | |
) | |
demo.launch() | |