Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
from skimage.metrics import structural_similarity as ssim | |
def preprocess_image(image, blur_value): | |
# Convert to grayscale | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Apply Gaussian blur to reduce noise | |
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0) | |
return blurred | |
def create_dramatic_magenta(image1, diff): | |
"""Create a more dramatic magenta overlay to highlight differences""" | |
# Create a more intense magenta by boosting the red and blue channels | |
diff_colored = cv2.absdiff(image1, diff) | |
# Normalize to enhance contrast | |
diff_normalized = cv2.normalize(diff_colored, None, 0, 255, cv2.NORM_MINMAX) | |
# Amplify the red channel for more dramatic magenta | |
diff_normalized[:, :, 0] = 0 # Remove blue | |
diff_normalized[:, :, 1] = 0 # Remove green | |
diff_normalized[:, :, 2] = np.clip(diff_normalized[:, :, 2] * 2, 0, 255) # Boost red | |
# Create more dramatic overlay with higher contrast | |
overlay = cv2.addWeighted(image1, 0.5, diff_normalized, 0.8, 0) | |
return overlay | |
def background_subtraction(image1, image2): | |
subtractor = cv2.createBackgroundSubtractorMOG2() | |
fgmask1 = subtractor.apply(image1) | |
fgmask2 = subtractor.apply(image2) | |
diff = cv2.absdiff(fgmask1, fgmask2) | |
# Create a binary mask | |
_, mask = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY) | |
# Create highlighted differences | |
highlighted = cv2.bitwise_and(image2, image2, mask=mask) | |
# Create raw difference overlay with dramatic magenta | |
raw_overlay = create_dramatic_magenta(image1, image2) | |
# Create a blended image | |
blended = cv2.addWeighted(image1, 0.5, image2, 0.5, 0) | |
# Create a composite using the mask | |
composite = image1.copy() | |
composite[mask > 0] = image2[mask > 0] | |
# Create final difference overlay with dramatic magenta | |
final_overlay = create_dramatic_magenta(image1, composite) | |
return blended, raw_overlay, highlighted, mask, composite, final_overlay | |
def optical_flow(image1, image2): | |
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) | |
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) | |
flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, 0.5, 3, 15, 3, 5, 1.2, 0) | |
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1]) | |
hsv = np.zeros_like(image1) | |
hsv[..., 1] = 255 | |
hsv[..., 0] = ang * 180 / np.pi / 2 | |
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) | |
# Create mask from magnitude | |
mask = cv2.threshold(hsv[..., 2], 30, 255, cv2.THRESH_BINARY)[1].astype(np.uint8) | |
# Create highlighted differences | |
highlighted = cv2.bitwise_and(image2, image2, mask=mask) | |
# Create raw difference overlay with dramatic magenta | |
raw_overlay = create_dramatic_magenta(image1, image2) | |
# Create a blended image | |
blended = cv2.addWeighted(image1, 0.5, image2, 0.5, 0) | |
# Create a composite using the mask | |
composite = image1.copy() | |
composite[mask > 0] = image2[mask > 0] | |
# Create final difference overlay with dramatic magenta | |
final_overlay = create_dramatic_magenta(image1, composite) | |
return blended, raw_overlay, highlighted, mask, composite, final_overlay | |
def feature_matching(image1, image2): | |
# Use SSIM as a fallback for feature matching since the original implementation doesn't give us a good mask | |
return compare_ssim(image1, image2, 5, "Adaptive Threshold", 30) | |
def compare_ssim(image1, image2, blur_value, technique, threshold_value): | |
gray1 = preprocess_image(image1, blur_value) | |
gray2 = preprocess_image(image2, blur_value) | |
score, diff = ssim(gray1, gray2, full=True) | |
diff = (diff * 255).astype("uint8") | |
if technique == "Adaptive Threshold": | |
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV) | |
elif technique == "Otsu's Threshold": | |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) | |
else: | |
_, thresh = cv2.threshold(diff, threshold_value, 255, cv2.THRESH_BINARY) | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 500] | |
mask = np.zeros_like(gray1, dtype=np.uint8) | |
cv2.drawContours(mask, filtered_contours, -1, 255, thickness=cv2.FILLED) | |
# Create highlighted differences | |
highlighted = cv2.bitwise_and(image2, image2, mask=mask) | |
# Create raw difference overlay with dramatic magenta | |
raw_overlay = create_dramatic_magenta(image1, image2) | |
# Create a blended image | |
blended = cv2.addWeighted(image1, 0.5, image2, 0.5, 0) | |
# Create a composite using the mask | |
composite = image1.copy() | |
mask_3channel = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) | |
masked_obj = cv2.bitwise_and(image2, mask_3channel) | |
masked_bg = cv2.bitwise_and(image1, cv2.bitwise_not(mask_3channel)) | |
composite = cv2.add(masked_bg, masked_obj) | |
# Create final difference overlay with dramatic magenta | |
final_overlay = create_dramatic_magenta(image1, composite) | |
return blended, raw_overlay, highlighted, mask, composite, final_overlay | |
def compare_images(image1, image2, blur_value, technique, threshold_value, method): | |
if method == "Background Subtraction": | |
return background_subtraction(image1, image2) | |
elif method == "Optical Flow": | |
return optical_flow(image1, image2) | |
elif method == "Feature Matching": | |
return feature_matching(image1, image2) | |
else: # SSIM | |
return compare_ssim(image1, image2, blur_value, technique, threshold_value) | |
def update_threshold_visibility(technique): | |
return gr.update(visible=(technique == "Simple Binary")) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Object Difference Highlighter\nUpload two images: one without an object and one with an object. The app will highlight only the newly added object and show the real differences in magenta overlayed on the original image.") | |
with gr.Row(): | |
img1 = gr.Image(type="numpy", label="Image Without Object (Scene)") | |
img2 = gr.Image(type="numpy", label="Image With Object") | |
blur_slider = gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur") | |
technique_dropdown = gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold", interactive=True) | |
threshold_slider = gr.Slider(minimum=0, maximum=255, step=1, value=50, label="Threshold Value", visible=False) | |
method_dropdown = gr.Dropdown(["SSIM", "Background Subtraction", "Optical Flow", "Feature Matching"], label="Comparison Method", value="SSIM", interactive=True) | |
technique_dropdown.change(update_threshold_visibility, inputs=[technique_dropdown], outputs=[threshold_slider]) | |
# Row 1 - Blend and Raw Difference | |
with gr.Row(): | |
output1 = gr.Image(type="numpy", label="Blended Image") | |
output2 = gr.Image(type="numpy", label="Raw Difference Overlay (Magenta)") | |
# Row 2 - Algorithmic Differences and Mask | |
with gr.Row(): | |
output3 = gr.Image(type="numpy", label="Highlighted Differences") | |
output4 = gr.Image(type="numpy", label="Black & White Mask") | |
# Row 3 - Composite and Final Difference | |
with gr.Row(): | |
output5 = gr.Image(type="numpy", label="Composite (Scene + Masked Object)") | |
output6 = gr.Image(type="numpy", label="Final Difference Overlay (Magenta)") | |
btn = gr.Button("Process") | |
btn.click(compare_images, inputs=[img1, img2, blur_slider, technique_dropdown, threshold_slider, method_dropdown], outputs=[output1, output2, output3, output4, output5, output6]) | |
demo.launch() | |