Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,12 +10,45 @@ def preprocess_image(image, blur_value):
|
|
10 |
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0)
|
11 |
return blurred
|
12 |
|
13 |
-
def
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
gray1 = preprocess_image(image1, blur_value)
|
16 |
gray2 = preprocess_image(image2, blur_value)
|
17 |
-
|
18 |
-
# Compute SSIM between the two images
|
19 |
score, diff = ssim(gray1, gray2, full=True)
|
20 |
diff = (diff * 255).astype("uint8")
|
21 |
|
@@ -23,30 +56,20 @@ def compare_images(image1, image2, blur_value, technique, threshold_value):
|
|
23 |
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV)
|
24 |
elif technique == "Otsu's Threshold":
|
25 |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
26 |
-
else:
|
27 |
_, thresh = cv2.threshold(diff, threshold_value, 255, cv2.THRESH_BINARY)
|
28 |
|
29 |
-
# Find contours of differences
|
30 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
31 |
-
|
32 |
-
# Filter out small noise using contour area threshold
|
33 |
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 500]
|
34 |
-
|
35 |
-
# Create a mask to isolate only the significant added object
|
36 |
mask = np.zeros_like(image1, dtype=np.uint8)
|
37 |
cv2.drawContours(mask, filtered_contours, -1, (255, 255, 255), thickness=cv2.FILLED)
|
38 |
-
|
39 |
-
# Apply the mask to highlight the object added in the second image
|
40 |
highlighted = cv2.bitwise_and(image2, mask)
|
41 |
|
42 |
-
# Create a magenta overlay where changes occurred
|
43 |
diff_colored = np.zeros_like(image1, dtype=np.uint8)
|
44 |
-
diff_colored[:, :, 0] =
|
45 |
-
diff_colored[:, :, 1] = 0
|
46 |
-
diff_colored[:, :, 2] = thresh
|
47 |
-
|
48 |
-
# Combine the original image with the magenta overlay
|
49 |
-
overlayed = cv2.addWeighted(image1, 0.7, diff_colored, 0.3, 0)
|
50 |
|
51 |
return highlighted, overlayed
|
52 |
|
@@ -63,13 +86,15 @@ with gr.Blocks() as demo:
|
|
63 |
blur_slider = gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur")
|
64 |
technique_dropdown = gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold", interactive=True)
|
65 |
threshold_slider = gr.Slider(minimum=0, maximum=255, step=1, value=50, label="Threshold Value", visible=False)
|
|
|
66 |
|
67 |
technique_dropdown.change(update_threshold_visibility, inputs=[technique_dropdown], outputs=[threshold_slider])
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
btn = gr.Button("Process")
|
73 |
-
btn.click(compare_images, inputs=[img1, img2, blur_slider, technique_dropdown, threshold_slider], outputs=[output1, output2])
|
74 |
|
75 |
-
demo.launch()
|
|
|
10 |
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0)
|
11 |
return blurred
|
12 |
|
13 |
+
def background_subtraction(image1, image2):
|
14 |
+
subtractor = cv2.createBackgroundSubtractorMOG2()
|
15 |
+
fgmask1 = subtractor.apply(image1)
|
16 |
+
fgmask2 = subtractor.apply(image2)
|
17 |
+
diff = cv2.absdiff(fgmask1, fgmask2)
|
18 |
+
return cv2.cvtColor(diff, cv2.COLOR_GRAY2BGR)
|
19 |
+
|
20 |
+
def optical_flow(image1, image2):
|
21 |
+
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
|
22 |
+
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
|
23 |
+
flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, 0.5, 3, 15, 3, 5, 1.2, 0)
|
24 |
+
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
|
25 |
+
hsv = np.zeros_like(image1)
|
26 |
+
hsv[..., 1] = 255
|
27 |
+
hsv[..., 0] = ang * 180 / np.pi / 2
|
28 |
+
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
|
29 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
30 |
+
|
31 |
+
def feature_matching(image1, image2):
|
32 |
+
orb = cv2.ORB_create()
|
33 |
+
kp1, des1 = orb.detectAndCompute(image1, None)
|
34 |
+
kp2, des2 = orb.detectAndCompute(image2, None)
|
35 |
+
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
36 |
+
matches = bf.match(des1, des2)
|
37 |
+
matches = sorted(matches, key=lambda x: x.distance)
|
38 |
+
result = cv2.drawMatches(image1, kp1, image2, kp2, matches[:20], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
|
39 |
+
return result
|
40 |
+
|
41 |
+
def compare_images(image1, image2, blur_value, technique, threshold_value, method):
|
42 |
+
if method == "Background Subtraction":
|
43 |
+
return background_subtraction(image1, image2), None
|
44 |
+
elif method == "Optical Flow":
|
45 |
+
return optical_flow(image1, image2), None
|
46 |
+
elif method == "Feature Matching":
|
47 |
+
return feature_matching(image1, image2), None
|
48 |
+
|
49 |
+
# Default SSIM comparison
|
50 |
gray1 = preprocess_image(image1, blur_value)
|
51 |
gray2 = preprocess_image(image2, blur_value)
|
|
|
|
|
52 |
score, diff = ssim(gray1, gray2, full=True)
|
53 |
diff = (diff * 255).astype("uint8")
|
54 |
|
|
|
56 |
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV)
|
57 |
elif technique == "Otsu's Threshold":
|
58 |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
59 |
+
else:
|
60 |
_, thresh = cv2.threshold(diff, threshold_value, 255, cv2.THRESH_BINARY)
|
61 |
|
|
|
62 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
63 |
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 500]
|
|
|
|
|
64 |
mask = np.zeros_like(image1, dtype=np.uint8)
|
65 |
cv2.drawContours(mask, filtered_contours, -1, (255, 255, 255), thickness=cv2.FILLED)
|
|
|
|
|
66 |
highlighted = cv2.bitwise_and(image2, mask)
|
67 |
|
|
|
68 |
diff_colored = np.zeros_like(image1, dtype=np.uint8)
|
69 |
+
diff_colored[:, :, 0] = 0
|
70 |
+
diff_colored[:, :, 1] = 0
|
71 |
+
diff_colored[:, :, 2] = thresh
|
72 |
+
overlayed = cv2.addWeighted(image1, 0.7, diff_colored, 0.6, 0)
|
|
|
|
|
73 |
|
74 |
return highlighted, overlayed
|
75 |
|
|
|
86 |
blur_slider = gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur")
|
87 |
technique_dropdown = gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold", interactive=True)
|
88 |
threshold_slider = gr.Slider(minimum=0, maximum=255, step=1, value=50, label="Threshold Value", visible=False)
|
89 |
+
method_dropdown = gr.Dropdown(["SSIM", "Background Subtraction", "Optical Flow", "Feature Matching"], label="Comparison Method", value="SSIM", interactive=True)
|
90 |
|
91 |
technique_dropdown.change(update_threshold_visibility, inputs=[technique_dropdown], outputs=[threshold_slider])
|
92 |
|
93 |
+
with gr.Row():
|
94 |
+
output1 = gr.Image(type="numpy", label="Highlighted Differences")
|
95 |
+
output2 = gr.Image(type="numpy", label="Raw Difference Overlay (Magenta)")
|
96 |
|
97 |
btn = gr.Button("Process")
|
98 |
+
btn.click(compare_images, inputs=[img1, img2, blur_slider, technique_dropdown, threshold_slider, method_dropdown], outputs=[output1, output2])
|
99 |
|
100 |
+
demo.launch()
|