Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,28 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
from skimage.metrics import structural_similarity as ssim
|
5 |
|
6 |
-
def preprocess_image(image):
|
7 |
# Convert to grayscale
|
8 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
9 |
# Apply Gaussian blur to reduce noise
|
10 |
-
blurred = cv2.GaussianBlur(gray, (
|
11 |
return blurred
|
12 |
|
13 |
-
def compare_images(image1, image2):
|
14 |
# Preprocess images
|
15 |
-
gray1 = preprocess_image(image1)
|
16 |
-
gray2 = preprocess_image(image2)
|
17 |
|
18 |
# Compute SSIM between the two images
|
19 |
score, diff = ssim(gray1, gray2, full=True)
|
20 |
diff = (diff * 255).astype("uint8")
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Find contours of differences
|
26 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
@@ -35,17 +39,25 @@ def compare_images(image1, image2):
|
|
35 |
# Apply the mask to highlight the object added in the second image
|
36 |
highlighted = cv2.bitwise_and(image2, mask)
|
37 |
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
demo = gr.Interface(
|
41 |
fn=compare_images,
|
42 |
inputs=[
|
43 |
gr.Image(type="numpy", label="Image Without Object"),
|
44 |
-
gr.Image(type="numpy", label="Image With Object")
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
],
|
46 |
-
outputs=gr.Image(type="numpy", label="Highlighted Differences"),
|
47 |
title="Object Difference Highlighter",
|
48 |
-
description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object."
|
49 |
)
|
50 |
|
51 |
demo.launch()
|
|
|
3 |
import numpy as np
|
4 |
from skimage.metrics import structural_similarity as ssim
|
5 |
|
6 |
+
def preprocess_image(image, blur_value):
|
7 |
# Convert to grayscale
|
8 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
9 |
# Apply Gaussian blur to reduce noise
|
10 |
+
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0)
|
11 |
return blurred
|
12 |
|
13 |
+
def compare_images(image1, image2, blur_value, technique):
|
14 |
# Preprocess images
|
15 |
+
gray1 = preprocess_image(image1, blur_value)
|
16 |
+
gray2 = preprocess_image(image2, blur_value)
|
17 |
|
18 |
# Compute SSIM between the two images
|
19 |
score, diff = ssim(gray1, gray2, full=True)
|
20 |
diff = (diff * 255).astype("uint8")
|
21 |
|
22 |
+
if technique == "Adaptive Threshold":
|
23 |
+
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV)
|
24 |
+
elif technique == "Otsu's Threshold":
|
25 |
+
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
26 |
+
else: # Default to simple binary threshold
|
27 |
+
_, thresh = cv2.threshold(diff, 50, 255, cv2.THRESH_BINARY)
|
28 |
|
29 |
# Find contours of differences
|
30 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
39 |
# Apply the mask to highlight the object added in the second image
|
40 |
highlighted = cv2.bitwise_and(image2, mask)
|
41 |
|
42 |
+
# Show the raw difference in magenta
|
43 |
+
diff_colored = cv2.merge([np.zeros_like(diff), diff, diff])
|
44 |
+
|
45 |
+
return highlighted, diff_colored
|
46 |
|
47 |
demo = gr.Interface(
|
48 |
fn=compare_images,
|
49 |
inputs=[
|
50 |
gr.Image(type="numpy", label="Image Without Object"),
|
51 |
+
gr.Image(type="numpy", label="Image With Object"),
|
52 |
+
gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur"),
|
53 |
+
gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold")
|
54 |
+
],
|
55 |
+
outputs=[
|
56 |
+
gr.Image(type="numpy", label="Highlighted Differences"),
|
57 |
+
gr.Image(type="numpy", label="Raw Difference (Magenta)")
|
58 |
],
|
|
|
59 |
title="Object Difference Highlighter",
|
60 |
+
description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object and show the real differences in magenta."
|
61 |
)
|
62 |
|
63 |
demo.launch()
|