import gradio as gr import cv2 import numpy as np from skimage.metrics import structural_similarity as ssim def compare_images(image1, image2): # Convert images to grayscale gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) # Compute SSIM between the two images score, diff = ssim(gray1, gray2, full=True) diff = (diff * 255).astype("uint8") # Threshold the difference image to get regions with major changes _, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # Find contours of differences contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Create a mask to isolate only the significant added object mask = np.zeros_like(image1) cv2.drawContours(mask, contours, -1, (255, 255, 255), thickness=cv2.FILLED) # Apply the mask to highlight the object added in the second image highlighted = cv2.bitwise_and(image2, mask) return highlighted demo = gr.Interface( fn=compare_images, inputs=[ gr.Image(type="numpy", label="Image Without Object"), gr.Image(type="numpy", label="Image With Object") ], outputs=gr.Image(type="numpy", label="Highlighted Differences"), title="Object Difference Highlighter", description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object." ) demo.launch()