File size: 13,130 Bytes
62977bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#
# Pyserini: Python interface to the Anserini IR toolkit built on Lucene
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
This module provides Pyserini's Python ltr search interface on MS MARCO passage. The main entry point is the ``MsmarcoPassageLtrSearcher``
class.
"""

import logging
import multiprocessing
import time
import os
from tqdm import tqdm
import pickle
from pyserini.index.lucene import IndexReader
from pyserini.search.lucene import LuceneSearcher
from pyserini.util import get_cache_home

from pyserini.search.lucene.ltr._base import *


logger = logging.getLogger(__name__)

class MsmarcoLtrSearcher:
    def __init__(self, model: str, ibm_model:str, index:str, data: str, prebuilt: bool, topic: str):
        #msmarco-ltr-passage
        self.model = model
        self.ibm_model = ibm_model
        if prebuilt:
            self.lucene_searcher = LuceneSearcher.from_prebuilt_index(index)
            index_directory = os.path.join(get_cache_home(), 'indexes')
            if data == 'passage':
                index_path = os.path.join(index_directory, 'index-msmarco-passage-ltr-20210519-e25e33f.a5de642c268ac1ed5892c069bdc29ae3')
            else:
                index_path = os.path.join(index_directory, 'index-msmarco-doc-per-passage-ltr-20211031-33e4151.bd60e89041b4ebbabc4bf0cfac608a87')
            self.index_reader = IndexReader.from_prebuilt_index(index)
        else:
            index_path = index
            self.index_reader = IndexReader(index)
        self.fe = FeatureExtractor(index_path, max(multiprocessing.cpu_count()//2, 1))
        self.data = data

    
    def add_fe(self):
        #self.fe.add(RunList('collections/msmarco-ltr-passage/run.monot5.run_list.whole.trec','t5'))
        #self.fe.add(RunList('../bert.whole.doc.trec','bert'))
        for qfield, ifield in [('analyzed', 'contents'),
                           ('text_unlemm', 'text_unlemm'),
                           ('text_bert_tok', 'text_bert_tok')]:
            print(qfield, ifield)
            self.fe.add(BM25Stat(SumPooler(), k1=2.0, b=0.75, field=ifield, qfield=qfield))
            self.fe.add(BM25Stat(AvgPooler(), k1=2.0, b=0.75, field=ifield, qfield=qfield))
            self.fe.add(BM25Stat(MedianPooler(), k1=2.0, b=0.75, field=ifield, qfield=qfield))
            self.fe.add(BM25Stat(MaxPooler(), k1=2.0, b=0.75, field=ifield, qfield=qfield))
            self.fe.add(BM25Stat(MinPooler(), k1=2.0, b=0.75, field=ifield, qfield=qfield))
            self.fe.add(BM25Stat(MaxMinRatioPooler(), k1=2.0, b=0.75, field=ifield, qfield=qfield))

            self.fe.add(LmDirStat(SumPooler(), mu=1000, field=ifield, qfield=qfield))
            self.fe.add(LmDirStat(AvgPooler(), mu=1000, field=ifield, qfield=qfield))
            self.fe.add(LmDirStat(MedianPooler(), mu=1000, field=ifield, qfield=qfield))
            self.fe.add(LmDirStat(MaxPooler(), mu=1000, field=ifield, qfield=qfield))
            self.fe.add(LmDirStat(MinPooler(), mu=1000, field=ifield, qfield=qfield))
            self.fe.add(LmDirStat(MaxMinRatioPooler(), mu=1000, field=ifield, qfield=qfield))

            self.fe.add(NormalizedTfIdf(field=ifield, qfield=qfield))
            self.fe.add(ProbalitySum(field=ifield, qfield=qfield))

            self.fe.add(DfrGl2Stat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrGl2Stat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrGl2Stat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrGl2Stat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrGl2Stat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrGl2Stat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(DfrInExpB2Stat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrInExpB2Stat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrInExpB2Stat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrInExpB2Stat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrInExpB2Stat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(DfrInExpB2Stat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(DphStat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(DphStat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(DphStat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(DphStat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(DphStat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(DphStat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(Proximity(field=ifield, qfield=qfield))
            self.fe.add(TpScore(field=ifield, qfield=qfield))
            self.fe.add(TpDist(field=ifield, qfield=qfield))

            self.fe.add(DocSize(field=ifield))

            self.fe.add(QueryLength(qfield=qfield))
            self.fe.add(QueryCoverageRatio(qfield=qfield))
            self.fe.add(UniqueTermCount(qfield=qfield))
            self.fe.add(MatchingTermCount(field=ifield, qfield=qfield))
            self.fe.add(SCS(field=ifield, qfield=qfield))

            self.fe.add(TfStat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfStat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfStat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfStat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfStat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfStat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(TfIdfStat(True, AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfIdfStat(True, MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfIdfStat(True, SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfIdfStat(True, MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfIdfStat(True, MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(TfIdfStat(True, MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(NormalizedTfStat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(NormalizedTfStat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(NormalizedTfStat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(NormalizedTfStat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(NormalizedTfStat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(NormalizedTfStat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(IdfStat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(IdfStat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(IdfStat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(IdfStat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(IdfStat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(IdfStat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(IcTfStat(AvgPooler(), field=ifield, qfield=qfield))
            self.fe.add(IcTfStat(MedianPooler(), field=ifield, qfield=qfield))
            self.fe.add(IcTfStat(SumPooler(), field=ifield, qfield=qfield))
            self.fe.add(IcTfStat(MinPooler(), field=ifield, qfield=qfield))
            self.fe.add(IcTfStat(MaxPooler(), field=ifield, qfield=qfield))
            self.fe.add(IcTfStat(MaxMinRatioPooler(), field=ifield, qfield=qfield))

            self.fe.add(UnorderedSequentialPairs(3, field=ifield, qfield=qfield))
            self.fe.add(UnorderedSequentialPairs(8, field=ifield, qfield=qfield))
            self.fe.add(UnorderedSequentialPairs(15, field=ifield, qfield=qfield))
            self.fe.add(OrderedSequentialPairs(3, field=ifield, qfield=qfield))
            self.fe.add(OrderedSequentialPairs(8, field=ifield, qfield=qfield))
            self.fe.add(OrderedSequentialPairs(15, field=ifield, qfield=qfield))
            self.fe.add(UnorderedQueryPairs(3, field=ifield, qfield=qfield))
            self.fe.add(UnorderedQueryPairs(8, field=ifield, qfield=qfield))
            self.fe.add(UnorderedQueryPairs(15, field=ifield, qfield=qfield))
            self.fe.add(OrderedQueryPairs(3, field=ifield, qfield=qfield))
            self.fe.add(OrderedQueryPairs(8, field=ifield, qfield=qfield))
            self.fe.add(OrderedQueryPairs(15, field=ifield, qfield=qfield))

        start = time.time()
        self.fe.add(IbmModel1(f"{self.ibm_model}/title_unlemm", "text_unlemm", "title_unlemm", "text_unlemm"))
        end = time.time()
        print('IBM model Load takes %.2f seconds' % (end - start))
        start = end
        self.fe.add(IbmModel1(f"{self.ibm_model}url_unlemm", "text_unlemm", "url_unlemm", "text_unlemm"))
        end = time.time()
        print('IBM model Load takes %.2f seconds' % (end - start))
        start = end
        self.fe.add(IbmModel1(f"{self.ibm_model}body", "text_unlemm", "body", "text_unlemm"))
        end = time.time()
        print('IBM model Load takes %.2f seconds' % (end - start))
        start = end
        self.fe.add(IbmModel1(f"{self.ibm_model}text_bert_tok", "text_bert_tok", "text_bert_tok", "text_bert_tok"))
        end = time.time()
        print('IBM model Load takes %.2f seconds' % (end - start))
        start = end
    
    def batch_extract(self, df, queries, fe):
        tasks = []
        task_infos = []
        group_lst = []

        for qid, group in tqdm(df.groupby('qid')):
            task = {
                "qid": qid,
                "docIds": [],
                "rels": [],
                "query_dict": queries[qid]
            }
            for t in group.reset_index().itertuples():
                if self.data == 'document':
                    if self.index_reader.doc(t.pid) != None:
                        task["docIds"].append(t.pid)
                        task_infos.append((qid, t.pid, t.rel))
                else:
                    task["docIds"].append(t.pid)
                    task_infos.append((qid, t.pid, t.rel))
            tasks.append(task)
            group_lst.append((qid, len(task['docIds'])))
            if len(tasks) == 1000:
                features = fe.batch_extract(tasks)
                task_infos = pd.DataFrame(task_infos, columns=['qid', 'pid', 'rel'])
                group = pd.DataFrame(group_lst, columns=['qid', 'count'])
                print(features.shape)
                print(task_infos.qid.drop_duplicates().shape)
                print(group.mean())
                print(features.head(10))
                print(features.info())
                yield task_infos, features, group
                tasks = []
                task_infos = []
                group_lst = []
        # deal with rest
        if len(tasks) > 0:
            features = fe.batch_extract(tasks)
            task_infos = pd.DataFrame(task_infos, columns=['qid', 'pid', 'rel'])
            group = pd.DataFrame(group_lst, columns=['qid', 'count'])
            print(features.shape)
            print(task_infos.qid.drop_duplicates().shape)
            print(group.mean())
            print(features.head(10))
            print(features.info())
            yield task_infos, features, group

        return

    def batch_predict(self, models, dev_extracted, feature_name):
        task_infos, features, group = dev_extracted
        dev_X = features.loc[:, feature_name]

        task_infos['score'] = 0.
        for gbm in models:
            task_infos['score'] += gbm.predict(dev_X)
    
    def search(self, dev, queries):
        batch_info = []
        start_extract = time.time()
        models = pickle.load(open(self.model+'/model.pkl', 'rb'))
        metadata = json.load(open(self.model+'/metadata.json', 'r'))
        feature_used = metadata['feature_names']
        for dev_extracted in self.batch_extract(dev, queries, self.fe):
            end_extract = time.time()
            print(f'extract 1000 queries take {end_extract - start_extract}s')
            task_infos, features, group = dev_extracted
            start_predict = time.time()
            self.batch_predict(models, dev_extracted, feature_used)
            end_predict = time.time()
            print(f'predict 1000 queries take {end_predict - start_predict}s')
            batch_info.append(task_infos)
            start_extract = time.time()
        batch_info = pd.concat(batch_info, axis=0, ignore_index=True)
        return batch_info