Spaces:
Sleeping
Sleeping
Commit
·
5bfd5e8
1
Parent(s):
c02e1f0
changes
Browse files- app.py +54 -45
- requirements.txt +4 -5
app.py
CHANGED
|
@@ -1,50 +1,59 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
plt.
|
| 26 |
-
plt.
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
iface = gr.Interface(
|
| 38 |
-
fn=
|
| 39 |
-
inputs=
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
-
# Launch the
|
| 50 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.linear_model import LinearRegression
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
def linear_regression(input_csv, x_column, y_column):
|
| 9 |
+
# Load dataset
|
| 10 |
+
df = pd.read_csv(input_csv)
|
| 11 |
+
|
| 12 |
+
# Prepare data for regression
|
| 13 |
+
X = df[[x_column]].values
|
| 14 |
+
y = df[y_column].values
|
| 15 |
+
|
| 16 |
+
# Perform linear regression
|
| 17 |
+
model = LinearRegression()
|
| 18 |
+
model.fit(X, y)
|
| 19 |
+
|
| 20 |
+
# Make predictions
|
| 21 |
+
y_pred = model.predict(X)
|
| 22 |
+
|
| 23 |
+
# Plotting
|
| 24 |
+
plt.figure(figsize=(10, 6))
|
| 25 |
+
plt.scatter(X, y, color='blue')
|
| 26 |
+
plt.plot(X, y_pred, color='red')
|
| 27 |
+
plt.xlabel(x_column)
|
| 28 |
+
plt.ylabel(y_column)
|
| 29 |
+
plt.title('Linear Regression')
|
| 30 |
+
|
| 31 |
+
# Save plot to a buffer
|
| 32 |
+
buf = io.BytesIO()
|
| 33 |
+
plt.savefig(buf, format='png')
|
| 34 |
+
buf.seek(0)
|
| 35 |
+
|
| 36 |
+
# Regression info
|
| 37 |
+
coef_info = f"Coefficient: {model.coef_[0]}\nIntercept: {model.intercept_}"
|
| 38 |
+
|
| 39 |
+
return buf, coef_info
|
| 40 |
+
|
| 41 |
+
# Gradio interface
|
| 42 |
iface = gr.Interface(
|
| 43 |
+
fn=linear_regression,
|
| 44 |
+
inputs=[
|
| 45 |
+
gr.inputs.File(type="csv"),
|
| 46 |
+
gr.inputs.Textbox(label="X Column Name"),
|
| 47 |
+
gr.inputs.Textbox(label="Y Column Name"),
|
| 48 |
+
],
|
| 49 |
+
outputs=[
|
| 50 |
+
gr.outputs.Image(type="plot"),
|
| 51 |
+
gr.outputs.Textbox(label="Regression Info")
|
| 52 |
+
],
|
| 53 |
+
title="Automatic Linear Regression Modeling",
|
| 54 |
+
description="Upload a CSV file and specify the columns for performing linear regression."
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Launch the app
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
iface.launch()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
gradio
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
torch
|
|
|
|
| 1 |
gradio
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
scikit-learn
|
| 5 |
+
matplotlib
|
|
|