Spaces:
Sleeping
Sleeping
Commit
·
8705e71
1
Parent(s):
a6fb37c
newe
Browse files
app.py
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
from sklearn.linear_model import LinearRegression
|
4 |
import matplotlib.pyplot as plt
|
5 |
import io
|
6 |
from PIL import Image
|
7 |
|
8 |
-
def linear_regression(
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Perform linear regression
|
14 |
model = LinearRegression()
|
@@ -21,8 +28,8 @@ def linear_regression(x_values, y_values):
|
|
21 |
plt.figure(figsize=(10, 6))
|
22 |
plt.scatter(X, y, color='blue')
|
23 |
plt.plot(X, y_pred, color='red')
|
24 |
-
plt.xlabel(
|
25 |
-
plt.ylabel(
|
26 |
plt.title('Linear Regression')
|
27 |
|
28 |
# Save plot to a buffer and convert to PIL Image
|
@@ -36,20 +43,29 @@ def linear_regression(x_values, y_values):
|
|
36 |
|
37 |
return image, coef_info
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Gradio interface
|
40 |
iface = gr.Interface(
|
41 |
fn=linear_regression,
|
42 |
-
inputs=[
|
43 |
-
gr.components.Textbox(placeholder="Enter X values separated by commas (e.g., 1,2,3)", label="X Values"),
|
44 |
-
gr.components.Textbox(placeholder="Enter Y values separated by commas (e.g., 2,4,6)", label="Y Values")
|
45 |
-
],
|
46 |
outputs=[
|
47 |
gr.components.Image(type="pil"),
|
48 |
gr.components.Textbox(label="Regression Info")
|
49 |
],
|
50 |
title="Automatic Linear Regression Modeling",
|
51 |
-
description="
|
52 |
-
|
|
|
53 |
|
54 |
# Launch the app
|
55 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
import numpy as np
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
import matplotlib.pyplot as plt
|
6 |
import io
|
7 |
from PIL import Image
|
8 |
|
9 |
+
def linear_regression(input_csv):
|
10 |
+
# Load dataset from binary
|
11 |
+
df = pd.read_csv(io.BytesIO(input_csv))
|
12 |
+
|
13 |
+
# Assume the first column is X and the second column is Y
|
14 |
+
if len(df.columns) < 2:
|
15 |
+
return None, "CSV file must contain at least two columns."
|
16 |
+
|
17 |
+
X = df.iloc[:, 0].values.reshape(-1, 1)
|
18 |
+
y = df.iloc[:, 1].values
|
19 |
|
20 |
# Perform linear regression
|
21 |
model = LinearRegression()
|
|
|
28 |
plt.figure(figsize=(10, 6))
|
29 |
plt.scatter(X, y, color='blue')
|
30 |
plt.plot(X, y_pred, color='red')
|
31 |
+
plt.xlabel(df.columns[0])
|
32 |
+
plt.ylabel(df.columns[1])
|
33 |
plt.title('Linear Regression')
|
34 |
|
35 |
# Save plot to a buffer and convert to PIL Image
|
|
|
43 |
|
44 |
return image, coef_info
|
45 |
|
46 |
+
# Tutorial Markdown
|
47 |
+
tutorial_markdown = """
|
48 |
+
## Tutorial
|
49 |
+
|
50 |
+
Follow these steps to use the application:
|
51 |
+
|
52 |
+
1. Prepare a CSV file with two columns. The first column should be your independent variable (X), and the second column your dependent variable (Y).
|
53 |
+
2. Upload the CSV file using the 'File Upload' field.
|
54 |
+
3. The application will automatically process the file, perform linear regression, and display the results and a plot.
|
55 |
+
"""
|
56 |
+
|
57 |
# Gradio interface
|
58 |
iface = gr.Interface(
|
59 |
fn=linear_regression,
|
60 |
+
inputs=[gr.components.File(type="binary")],
|
|
|
|
|
|
|
61 |
outputs=[
|
62 |
gr.components.Image(type="pil"),
|
63 |
gr.components.Textbox(label="Regression Info")
|
64 |
],
|
65 |
title="Automatic Linear Regression Modeling",
|
66 |
+
description="Upload a CSV file with two columns. The first column will be used as X (independent variable) and the second as Y (dependent variable).",
|
67 |
+
layout="vertical"
|
68 |
+
).add_instructions(tutorial_markdown)
|
69 |
|
70 |
# Launch the app
|
71 |
if __name__ == "__main__":
|