import gradio as gr import matplotlib.pyplot as plt from transformers import pipeline # Load the Hugging Face pipelines for translation and text generation translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") generator = pipeline("text-generation", model="gpt3.5-turbo") # Define the function to generate the graph based on the translated prompt def generate_graph(prompt): # Translate the prompt to the desired language (e.g., from English to Spanish) translated_prompt = translator(prompt, max_length=100, src_lang="en", tgt_lang="es") translated_text = translated_prompt[0]['translation_text'] # Generate text using the Hugging Face pipeline response = generator(translated_text, max_length=100) text = response[0]['generated_text'] # Generate the graph using Matplotlib # Replace this code with your specific graph generation logic x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.plot(x, y) plt.xlabel('X') plt.ylabel('Y') plt.title('Generated Graph') # Save the generated graph to a file graph_path = '/path/to/generated_graph.png' plt.savefig(graph_path) return graph_path # Create the Gradio interface iface = gr.Interface( fn=generate_graph, inputs="text", outputs="file", title="Graph Generator", description="Generate a graph based on a translated prompt", examples=[ ["Translate and generate a graph"], ["Translate and graph the relationship between X and Y"], ] ) # Launch the Gradio interface iface.launch()