rioanggara commited on
Commit
9a7103b
·
1 Parent(s): 05f9deb
Files changed (2) hide show
  1. app.py +11 -44
  2. requirements.txt +2 -5
app.py CHANGED
@@ -1,49 +1,16 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
- from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix, roc_curve, auc
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
 
7
- # Initialize the sentiment analysis pipeline with a multilingual model
8
- sentiment_analysis = pipeline("sentiment-analysis", model="bert-base-multilingual-cased")
 
9
 
10
- def analyze_sentiment(text):
11
- result = sentiment_analysis(text)
12
- return result[0]
 
 
13
 
14
- # Mock functions to calculate metrics - Replace with actual implementation
15
- def calculate_metrics(y_true, y_pred):
16
- accuracy = accuracy_score(y_true, y_pred)
17
- precision, recall, f1, _ = precision_recall_fscore_support(y_true, y_pred, average='binary')
18
- cm = confusion_matrix(y_true, y_pred)
19
- fpr, tpr, _ = roc_curve(y_true, y_pred)
20
- roc_auc = auc(fpr, tpr)
21
- return accuracy, precision, recall, f1, cm, fpr, tpr, roc_auc
22
 
23
- def plot_confusion_matrix(cm):
24
- # Plot confusion matrix here
25
- pass
26
-
27
- def plot_roc_curve(fpr, tpr, roc_auc):
28
- # Plot ROC curve here
29
- pass
30
-
31
- # Replace this with actual test data and predictions
32
- y_true = [0, 1, 0, 1] # True labels
33
- y_pred = [0, 1, 0, 1] # Predicted labels
34
-
35
- # Calculate metrics
36
- accuracy, precision, recall, f1, cm, fpr, tpr, roc_auc = calculate_metrics(y_true, y_pred)
37
-
38
- # Plot confusion matrix and ROC curve
39
- plot_confusion_matrix(cm)
40
- plot_roc_curve(fpr, tpr, roc_auc)
41
-
42
- # Create a Gradio interface
43
- interface = gr.Interface(
44
- fn=analyze_sentiment,
45
- inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Text Here..."),
46
- outputs="text"
47
- )
48
-
49
- interface.launch()
 
1
  import gradio as gr
2
+ from PIL import Image
 
 
 
3
 
4
+ def to_black_and_white(input_image):
5
+ bw_image = input_image.convert("L") # Convert to grayscale
6
+ return bw_image
7
 
8
+ with gr.Blocks() as app:
9
+ gr.Markdown("### Black and White Image Maker")
10
+ with gr.Row():
11
+ image_input = gr.Image(type="pil", label="Upload your Image")
12
+ image_output = gr.Image(type="pil", label="Black and White Image", tool="editor")
13
 
14
+ image_input.change(to_black_and_white, inputs=image_input, outputs=image_output)
 
 
 
 
 
 
 
15
 
16
+ app.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,5 +1,2 @@
1
- transformers==4.36.2
2
- gradio==4.14.0
3
- scikit-learn
4
- matplotlib
5
- tensorflow
 
1
+ gradio
2
+ PIL